On the Complexity of Semide nite Programs

We show that the feasibility of a system of m linear inequalities over the cone of symmetric positive semideenite matrices of order n can be tested in mn O(minfm;n 2 g) arithmetic operations with ln O(minfm;n 2 g)-bit numbers, where l is the maximum binary size of the input coeecients. We also show that any feasible system of dimension (m; n) has a solution X such that log kXk ln O(minfm;n 2 g) .

[1]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[2]  L. Lovász,et al.  Geometric Algorithms and Combinatorial Optimization , 1981 .

[3]  M. Mignotte Some Useful Bounds , 1983 .

[4]  David K. Smith Theory of Linear and Integer Programming , 1987 .

[5]  J. G. Pierce,et al.  Geometric Algorithms and Combinatorial Optimization , 2016 .

[6]  I. Adler,et al.  A randomization scheme for speeding up algorithms for linear and convex quadratic programming proble , 1990 .

[7]  James Renegar,et al.  On the Computational Complexity of Approximating Solutions for Real Algebraic Formulae , 1992, SIAM J. Comput..

[8]  James Renegar,et al.  On the Computational Complexity and Geometry of the First-Order Theory of the Reals, Part I: Introduction. Preliminaries. The Geometry of Semi-Algebraic Sets. The Decision Problem for the Existential Theory of the Reals , 1992, J. Symb. Comput..

[9]  Bernard Chazelle,et al.  On linear-time deterministic algorithms for optimization problems in fixed dimension , 1996, SODA '93.

[10]  M. Ramana An algorithmic analysis of multiquadratic and semidefinite programming problems , 1994 .

[11]  Kenneth L. Clarkson,et al.  Las Vegas algorithms for linear and integer programming when the dimension is small , 1995, JACM.

[12]  Motakuri V. Ramana,et al.  An exact duality theory for semidefinite programming and its complexity implications , 1997, Math. Program..

[13]  Alexander Schrijver,et al.  Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.