Linear scaling computation of the Fock matrix. VII. Parallel computation of the Coulomb matrix.

We present parallelization of a quantum-chemical tree-code for linear scaling computation of the Coulomb matrix. Equal time partition is used to load balance computation of the Coulomb matrix. Equal time partition is a measurement based algorithm for domain decomposition that exploits small variation of the density between self-consistent-field cycles to achieve load balance. Efficiency of the equal time partition is illustrated by several tests involving both finite and periodic systems. It is found that equal time partition is able to deliver 91%-98% efficiency with 128 processors in the most time consuming part of the Coulomb matrix calculation. The current parallel quantum chemical tree code is able to deliver 63%-81% overall efficiency on 128 processors with fine grained parallelism (less than two heavy atoms per processor).

[1]  Eric Schwegler,et al.  Linear scaling computation of the Hartree–Fock exchange matrix , 1996 .

[2]  Jan Almlöf,et al.  THE COULOMB OPERATOR IN A GAUSSIAN PRODUCT BASIS , 1995 .

[3]  Benny G. Johnson,et al.  Linear scaling density functional calculations via the continuous fast multipole method , 1996 .

[4]  David E. Bernholdt,et al.  High performance computational chemistry: An overview of NWChem a distributed parallel application , 2000 .

[5]  Mark S. Gordon,et al.  New parallel optimal‐parameter fast multipole method (OPFMM) , 2001, J. Comput. Chem..

[6]  Benny G. Johnson,et al.  THE CONTINUOUS FAST MULTIPOLE METHOD , 1994 .

[7]  E. Davidson,et al.  One- and two-electron integrals over cartesian gaussian functions , 1978 .

[8]  Matt Challacombe,et al.  Linear scaling computation of the Fock matrix. VII. Periodic density functional theory at the Gamma point. , 2005, The Journal of chemical physics.

[9]  Scott B. Baden,et al.  Dynamic Partitioning of Non-Uniform Structured Workloads with Spacefilling Curves , 1996, IEEE Trans. Parallel Distributed Syst..

[10]  M. Head‐Gordon,et al.  A multipole acceptability criterion for electronic structure theory , 1998 .

[11]  Daw Model for energetics of solids based on the density matrix. , 1993, Physical review. B, Condensed matter.

[12]  Anders M.N. Niklasson Expansion algorithm for the density matrix , 2002 .

[13]  Michael J. Frisch,et al.  Achieving linear scaling in exchange-correlation density functional quadratures , 1996 .

[14]  Piet Hut,et al.  A hierarchical O(N log N) force-calculation algorithm , 1986, Nature.

[15]  Mark S. Gordon,et al.  The Distributed Data Interface in GAMESS , 2000 .

[16]  Eric Schwegler,et al.  Linear scaling computation of the Fock matrix. III. Formation of the exchange matrix with permutational symmetry , 2000 .

[17]  Michael J. Frisch,et al.  Ab initio quantum chemistry on a ccNUMA architecture using openMP III , 2000, Parallel Comput..

[18]  Jerzy Leszczynski,et al.  COMPUTATIONAL CHEMISTRY: Reviews of Current Trends , 2006 .

[19]  Matt Challacombe,et al.  Linear scaling computation of the Fock matrix. V. Hierarchical Cubature for numerical integration of the exchange-correlation matrix , 2000 .

[20]  Fast evaluation of the Coulomb energy for electron densities , 1997 .

[21]  Michael S. Warren,et al.  A portable parallel particle program , 1995 .

[22]  Jon Louis Bentley,et al.  Multidimensional divide-and-conquer , 1980, CACM.

[23]  Thomas R. Furlani,et al.  Parallelization of SCF calculations within Q-Chem , 2000 .

[24]  Eric Schwegler,et al.  Linear scaling computation of the Fock matrix. II. Rigorous bounds on exchange integrals and incremental Fock build , 1997 .

[25]  Anders M. N. Niklasson,et al.  Trace resetting density matrix purification in O(N) self-consistent-field theory , 2003 .

[26]  Eric Schwegler,et al.  Fast assembly of the Coulomb matrix: A quantum chemical tree code , 1996 .

[27]  Matt Challacombe,et al.  Linear scaling computation of the Fock matrix. VI. Data parallel computation of the exchange-correlation matrix , 2003 .

[28]  Godehard Sutmann,et al.  Long-Range Interactions in Many-Particle Simulation , 2002 .

[29]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[30]  Oliver Günther,et al.  Multidimensional access methods , 1998, CSUR.

[31]  Li,et al.  Density-matrix electronic-structure method with linear system-size scaling. , 1993, Physical review. B, Condensed matter.

[32]  Michael J. Frisch,et al.  Achieving Linear Scaling for the Electronic Quantum Coulomb Problem , 1996, Science.

[33]  Michael J. Frisch,et al.  Ab initio quantum chemistry on the Cray T3E massively parallel supercomputer: II , 1998 .

[34]  Thomas R. Furlani,et al.  Implementation of a parallel direct SCF algorithm on distributed memory computers , 1995, J. Comput. Chem..

[35]  R. Harrison,et al.  AB Initio Molecular Electronic Structure on Parallel Computers , 1994 .

[36]  Mark S. Gordon,et al.  General atomic and molecular electronic structure system , 1993, J. Comput. Chem..

[37]  R. Ahlrichs,et al.  Performance of parallel TURBOMOLE for density functional calculations , 1998, J. Comput. Chem..

[38]  David E. Manolopoulos,et al.  Canonical purification of the density matrix in electronic-structure theory , 1998 .

[39]  Vipin Kumar,et al.  Scalable parallel formulations of the barnes-hut method for n-body simulations , 1994, Supercomputing '94.

[40]  Christopher R. Anderson,et al.  An Implementation of the Fast Multipole Method without Multipoles , 1992, SIAM J. Sci. Comput..

[41]  Eric Schwegler,et al.  Linear scaling computation of the Fock matrix , 1997 .

[42]  M. Challacombe,et al.  All-electron density-functional studies of hydrostatic compression of pentaerythritol tetranitrate C(CH2ONO2)4 , 2004 .

[43]  Yu Hu,et al.  A Data-Parallel Implementation of Hierarchical N-Body Methods , 1996, Int. J. High Perform. Comput. Appl..

[44]  A. Szabo,et al.  Modern quantum chemistry , 1982 .

[45]  Matt Challacombe,et al.  A simplified density matrix minimization for linear scaling self-consistent field theory , 1999 .

[46]  J. G. Snijders,et al.  Towards an order-N DFT method , 1998 .

[47]  C. Ronchi,et al.  Equation of State of UO2 , 2001 .

[48]  Barry Wilkinson,et al.  Parallel programming , 1998 .

[49]  Weitao Yang,et al.  An algorithm for 3D numerical integration that scales linearly with the size of the molecule , 1995 .

[50]  Anoop Gupta,et al.  Load Balancing and Data locality in Adaptive Hierarchical N-Body Methods: Barnes-Hut, Fast Multipole, and Rasiosity , 1995, J. Parallel Distributed Comput..

[51]  Linear scaling computation of the Fock matrix. VIII. Periodic boundaries for exact exchange at the Gamma point. , 2005, The Journal of chemical physics.

[52]  Jon Baker,et al.  Parallel Density Functional Theory Energies using the Fourier Transform Coulomb Method , 2004 .

[53]  D. Ferro,et al.  FLY. A parallel tree n-body code for cosmological simulations , 2003 .

[54]  Martin Head-Gordon,et al.  PERIODIC BOUNDARY CONDITIONS AND THE FAST MULTIPOLE METHOD , 1997 .

[55]  Eric Schwegler,et al.  Linear scaling computation of the Fock matrix. IV. Multipole accelerated formation of the exchange matrix , 1999 .

[56]  Jon Louis Bentley,et al.  Data Structures for Range Searching , 1979, CSUR.

[57]  Jon Baker,et al.  An efficient parallel algorithm for the calculation of canonical MP2 energies , 2002, J. Comput. Chem..

[58]  Gustavo E. Scuseria,et al.  Semiempirical methods with conjugate gradient density matrix search to replace diagonalization for molecular systems containing thousands of atoms , 1997 .

[59]  Michael E. Colvin,et al.  Parallel direct SCF for large-scale calculations , 1993 .