Corps de Hardy et observateurs asymptotiques locaux pour systèmes différentiellement plats

Resume On propose un observateur asymptotique local autour d'une trajectoire desiree, pour des systemes non lineaires differentiellement plats. En faisant l'hypothese, souvent verifiee en pratique, que les variables du systeme appartiennent a un meme corps de Hardy, dont l'exponentielle est la plus grande classe de comparabilite, on assure la convergence exponentielle de cet observateur grâce a un gain programme qui place les valeurs propres. On aborde un exemple de reacteur chimique.

[1]  A. Krener,et al.  Nonlinear controllability and observability , 1977 .

[2]  M. Fliess,et al.  Deux applications de la géométrie locale des diffiétés , 1997 .

[3]  Philippe Martin,et al.  Nonlinear control and Lie-Backlund transformations: towards a new differential geometric standpoint , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[4]  M. Fliess,et al.  Flatness and defect of non-linear systems: introductory theory and examples , 1995 .

[5]  M. Zeitz,et al.  Extended Luenberger observer for non-linear multivariable systems , 1988 .

[6]  M. Rosenlicht,et al.  The rank of a Hardy field , 1983 .

[7]  Michel Fliess,et al.  Some remarks on the Brunovsky canonical form , 1993, Kybernetika.

[8]  Darrell Williamson,et al.  Observation of bilinear systems with application to biological control , 1977, Autom..

[9]  Joachim Rudolph,et al.  DUALITY IN TIME-VARYING LINEAR SYSTEMS : A MODULE THEORETIC APPROACH , 1996 .

[10]  M. Fliess,et al.  Linéarisation par bouclage dynamique et transformations de Lie-Bäcklund , 1993 .

[11]  Jean Lévine,et al.  A nonlinear approach to the control of magnetic bearings , 1996, IEEE Trans. Control. Syst. Technol..

[12]  A. Jazwinski Stochastic Processes and Filtering Theory , 1970 .

[13]  Jean-Baptiste Pomet A differential geometric setting for dynamic equivalence and dynamic linearization , 1995 .

[14]  Ralf Rothfuß,et al.  Flatness based control of a nonlinear chemical reactor model , 1996, Autom..

[15]  L. Chambadal,et al.  Fonctions d'une variable rèelle , 1972 .

[16]  Eric Busvelle,et al.  A stable control structure for binary distillation columns , 1997 .

[17]  Eric Busvelle,et al.  Stability of polymerization reactors using I/O linearization and a high-gain observer , 1995, Autom..

[18]  R. Murray,et al.  Differential flatness and absolute equivalence , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[19]  Alexandre M. Vinogradov,et al.  From symmetries of partial differential equations towards secondary (“quantized”) calculus , 1994 .

[20]  Philippe Martin,et al.  A lie-bäcklund approach to dynamic feedback equivalence and flatness , 1996 .