PID auto-tuning using new model reduction method and explicit PID tuning rule for a fractional order plus time delay model

Abstract In this paper, a new model reduction method and an explicit PID tuning rule for the purpose of PID auto-tuning on the basis of a fractional order plus time delay model are proposed. The model reduction method directly fits the fractional order plus time delay model to frequency response data by solving a simple single-variable optimization problem. In addition, the optimal tuning parameters of the PID controller are obtained by solving the Integral of the Time weighted Absolute Error (ITAE) minimization problem and then, the proposed PID tuning rule in the form of an explicit formula is developed by fitting the parameters of the formula to the obtained optimal tuning parameters. The proposed tuning method provides almost the same performance as the optimal tuning parameters. Simulation study confirms that the auto-tuning strategy based on the proposed model reduction method and the PID tuning rule can successfully incorporate various types of process dynamics.

[1]  J. G. Ziegler,et al.  Optimum Settings for Automatic Controllers , 1942, Journal of Fluids Engineering.

[2]  Chang-Chieh Hang,et al.  A frequency response approach to autotuning of multivariable controllers , 1997 .

[3]  Karl Johan Åström,et al.  PID Controllers: Theory, Design, and Tuning , 1995 .

[4]  Ramon Vilanova,et al.  Data-driven robust PID tuning toolbox , 2012 .

[5]  Su Whan Sung,et al.  Automatic Tuning of PID Controller Using Second-Order Plus Time Delay Model , 1996 .

[6]  Alireza Karimi,et al.  A toolbox for robust PID controller tuning using convex optimization , 2012 .

[7]  Tore Hägglund,et al.  Automatic tuning of simple regulators with specifications on phase and amplitude margins , 1984, Autom..

[8]  In-Beum Lee,et al.  An improved algorithm for automatic tuning of PID controllers , 2000 .

[9]  Evanghelos Zafiriou,et al.  Robust process control , 1987 .

[10]  In-Beum Lee,et al.  Process Identification and PID Control , 2009 .

[11]  In-Beum Lee,et al.  Limitations and Countermeasures of PID Controllers , 1996 .

[12]  P. Payne An improved technique for transfer function synthesis from frequency response data , 1970 .

[13]  Kok Kiong Tan,et al.  Enhanced automatic tuning procedure for process control of PI/PID controllers , 1996 .

[14]  Ramon Vilanova,et al.  Optimal Robust Tuning for 1DoF PI/PID Control Unifying FOPDT/SOPDT Models , 2012 .

[15]  William L. Luyben,et al.  Process Modeling, Simulation and Control for Chemical Engineers , 1973 .

[16]  Su Whan Sung,et al.  Improved frequency response model identification method for processes with initial cyclic‐steady‐state , 2011 .

[17]  In-Beum Lee,et al.  Enhanced relay feedback method , 1997 .

[18]  E. C. Levy Complex-curve fitting , 1959, IRE Transactions on Automatic Control.

[19]  Tore Hägglund,et al.  Criteria and Trade-offs in PID Design , 2012 .

[20]  C. Sanathanan,et al.  Transfer function synthesis as a ratio of two complex polynomials , 1963 .

[21]  Tore Hägglund,et al.  Automatic Tuning of Pid Controllers , 1988 .

[22]  Sigurd Skogestad,et al.  Simple analytic rules for model reduction and PID controller tuning , 2003 .

[23]  YangQuan Chen,et al.  Fractional order control - A tutorial , 2009, 2009 American Control Conference.

[24]  Xin-jian Zhu,et al.  A simple auto-tuner in frequency domain , 2006, Comput. Chem. Eng..

[25]  Ramon Vilanova,et al.  PID control in the Third Millennium : lessons learned and new approaches , 2012 .

[26]  Weng Khuen Ho,et al.  Tuning of PID controllers based on gain and phase margin specifications , 1995, Autom..

[27]  A. H. Whitfield Transfer function synthesis using frequency response data , 1986 .