Prediction of phase and hardness of HEAs based on constituent elements using machine learning models

[1]  Aashish N. Adhikari,et al.  Deep Learning-Based Hardness Prediction of Novel Refractory High-Entropy Alloys with Experimental Validation , 2021, Crystals.

[2]  Soo Young Lee,et al.  Deep learning-based phase prediction of high-entropy alloys: Optimization, generation, and explanation , 2021, Materials & Design.

[3]  Alaa A. A,et al.  Deep Learning-based Phase Prediction of High-Entropy Alloys , 2020, IOP Conference Series: Materials Science and Engineering.

[4]  S. Datta,et al.  Designing Fe-based high entropy alloy–a machine learning approach , 2020, IOP Conference Series: Materials Science and Engineering.

[5]  Yong Du,et al.  Machine learning reveals the importance of the formation enthalpy and atom-size difference in forming phases of high entropy alloys , 2020, Materials & Design.

[6]  Steven K. Kauwe,et al.  Machine Learning for Structural Materials , 2020 .

[7]  Junqi Yin,et al.  Machine-learning informed prediction of high-entropy solid solution formation: Beyond the Hume-Rothery rules , 2020, npj Computational Materials.

[8]  S. Ni,et al.  CALPHAD aided design of high entropy alloy to achieve high strength via precipitate strengthening , 2019, Science China Materials.

[9]  Yao-Jen Chang,et al.  Prediction of the Composition and Hardness of High-Entropy Alloys by Machine Learning , 2019, JOM.

[10]  Dierk Raabe,et al.  High-entropy alloys , 2019, Nature Reviews Materials.

[11]  H. Zhuang,et al.  Machine-learning phase prediction of high-entropy alloys , 2019, Acta Materialia.

[12]  Wenjiang Huang,et al.  Machine learning for phase selection in multi-principal element alloys , 2018, Computational Materials Science.

[13]  M. Gao,et al.  Effect of Molybdenum on the Corrosion Behavior of High-Entropy Alloys CoCrFeNi2 and CoCrFeNi2Mo0.25 under Sodium Chloride Aqueous Conditions , 2018 .

[14]  Liang Wang,et al.  Composition design of high entropy alloys using the valence electron concentration to balance strength and ductility , 2018 .

[15]  Yi Ren,et al.  Improving direct physical properties prediction of heterogeneous materials from imaging data via convolutional neural network and a morphology-aware generative model , 2017, Computational Materials Science.

[16]  M. Widom,et al.  Thermodynamics of concentrated solid solution alloys , 2017 .

[17]  Chiho Kim,et al.  Machine learning in materials informatics: recent applications and prospects , 2017, npj Computational Materials.

[18]  P. Liaw,et al.  First-principles prediction of high-entropy-alloy stability , 2017, npj Computational Materials.

[19]  D. Miracle,et al.  A critical review of high entropy alloys and related concepts , 2016 .

[20]  Rampi Ramprasad,et al.  Adaptive machine learning framework to accelerate ab initio molecular dynamics , 2015 .

[21]  Sheng Guo,et al.  Phase selection rules for cast high entropy alloys: an overview , 2015 .

[22]  Jien-Wei Yeh,et al.  High-Entropy Alloys , 2014 .

[23]  Yan Pratama Detak,et al.  Modeling of Correlation between Heat Treatment and Mechanical Properties of Ti–6Al–4V Alloy Using Feed Forward Back Propagation Neural Network , 2010 .

[24]  Zushu Hu,et al.  Microstructures and compressive properties of multicomponent AlCoCrFeNiMox alloys , 2010 .

[25]  J. Yeh,et al.  Microstructure and electrochemical properties of high entropy alloys—a comparison with type-304 stainless steel , 2005 .

[26]  T. Shun,et al.  Nanostructured High‐Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes , 2004 .

[27]  D. Mackay,et al.  Bayesian Neural Network Analysis of Fatigue Crack Growth Rate in Nickel Base Superalloys , 1996 .