Finite-element discretizations of a two-dimensional grade-two fluid model
暂无分享,去创建一个
[1] F. Brezzi,et al. Stability of higher-order Hood-Taylor methods , 1991 .
[2] I. Babuska. The finite element method with Lagrangian multipliers , 1973 .
[3] Ricardo H. Nochetto,et al. Sharp maximum norm error estimates for finite element approximations of the Stokes problem in 2-D , 1988 .
[4] R. A. Nicolaides,et al. STABILITY OF FINITE ELEMENTS UNDER DIVERGENCE CONSTRAINTS , 1983 .
[5] E. Boschi. Recensioni: J. L. Lions - Quelques méthodes de résolution des problémes aux limites non linéaires. Dunod, Gauthier-Vi;;ars, Paris, 1969; , 1971 .
[6] Jean Leray,et al. Étude de diverses équations intégrales non linéaires et de quelques problèmes que pose l'Hydrodynamique. , 1933 .
[7] L. R. Scott,et al. Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .
[8] V. Girault,et al. A Local Regularization Operator for Triangular and Quadrilateral Finite Elements , 1998 .
[9] L. R. Scott,et al. A nodal basis for ¹ piecewise polynomials of degree ≥5 , 1975 .
[10] E. Hopf,et al. Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen. Erhard Schmidt zu seinem 75. Geburtstag gewidmet , 1950 .
[11] J. E. Dunn,et al. Fluids of differential type: Critical review and thermodynamic analysis , 1995 .
[12] Gerd Grubb,et al. PROBLÉMES AUX LIMITES NON HOMOGÉNES ET APPLICATIONS , 1969 .
[13] D. Whiffen. Thermodynamics , 1973, Nature.
[14] Vivette Girault,et al. Analysis of a two-dimensional grade-two fluid model with a tangential boundary condition , 1999 .
[15] P. Clément. Approximation by finite element functions using local regularization , 1975 .
[16] L. R. Scott,et al. Upwind discretizations of a steady grade-two fluid model in two dimensions , 2002 .
[17] Thomas J. R. Hughes,et al. A simple scheme for developing ‘upwind’ finite elements , 1978 .
[18] R. Stenberg. Analysis of mixed finite elements methods for the Stokes problem: a unified approach , 1984 .
[19] A. Sequeira,et al. A finite element approximation for the steady solution of a second-grade fluid model , 1999 .
[20] Darryl D. Holm,et al. The Euler–Poincaré Equations and Semidirect Products with Applications to Continuum Theories , 1998, chao-dyn/9801015.
[21] Jerrold E. Marsden,et al. EULER-POINCARE MODELS OF IDEAL FLUIDS WITH NONLINEAR DISPERSION , 1998 .
[22] P. Grisvard. Elliptic Problems in Nonsmooth Domains , 1985 .
[23] Michel Fortin,et al. Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.
[24] Jaak Peetre. Espaces d'interpolation et théorème de Soboleff , 1966 .
[25] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[26] Douglas N. Arnold,et al. Regular Inversion of the Divergence Operator with Dirichlet Boundary Conditions on a Polygon. , 1987 .
[27] O. Pironneau. Finite Element Methods for Fluids , 1990 .
[28] J. Lions. Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .
[29] Vivette Girault,et al. Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.
[30] F. Brezzi. On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers , 1974 .
[31] L. R. Scott,et al. Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials , 1985 .
[32] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[33] Claes Johnson,et al. Finite element methods for linear hyperbolic problems , 1984 .
[34] Vivette Girault,et al. Hermite interpolation of nonsmooth functions preserving boundary conditions , 2002, Math. Comput..
[35] Luc Tartar,et al. Topics in nonlinear analysis , 1978 .
[36] J. E. Dunn,et al. Thermodynamics, stability, and boundedness of fluids of complexity 2 and fluids of second grade , 1974 .