Finite-element discretizations of a two-dimensional grade-two fluid model

We propose and analyze several finite-element schemes for solving a grade-two fluid model, with a tangential boundary condition, in a two-dimensional polygon. The exact problem is split into a generalized Stokes problem and a transport equation, in such a way that it always has a solution without restriction on the shape of the domain and on the size of the data. The first scheme uses divergence-free discrete velocities and a centered discretization of the transport term, whereas the other schemes use Hood-Taylor discretizations for the velocity and pressure, and either a centered or an upwind discretization of the transport term. One facet of our analysis is that, without restrictions on the data, each scheme has a discrete solution and all discrete solutions converge strongly to solutions of the exact problem. Furthermore, if the domain is convex and the data satisfy certain conditions, each scheme satisfies error inequalities that lead to error estimates.

[1]  F. Brezzi,et al.  Stability of higher-order Hood-Taylor methods , 1991 .

[2]  I. Babuska The finite element method with Lagrangian multipliers , 1973 .

[3]  Ricardo H. Nochetto,et al.  Sharp maximum norm error estimates for finite element approximations of the Stokes problem in 2-D , 1988 .

[4]  R. A. Nicolaides,et al.  STABILITY OF FINITE ELEMENTS UNDER DIVERGENCE CONSTRAINTS , 1983 .

[5]  E. Boschi Recensioni: J. L. Lions - Quelques méthodes de résolution des problémes aux limites non linéaires. Dunod, Gauthier-Vi;;ars, Paris, 1969; , 1971 .

[6]  Jean Leray,et al.  Étude de diverses équations intégrales non linéaires et de quelques problèmes que pose l'Hydrodynamique. , 1933 .

[7]  L. R. Scott,et al.  Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .

[8]  V. Girault,et al.  A Local Regularization Operator for Triangular and Quadrilateral Finite Elements , 1998 .

[9]  L. R. Scott,et al.  A nodal basis for ¹ piecewise polynomials of degree ≥5 , 1975 .

[10]  E. Hopf,et al.  Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen. Erhard Schmidt zu seinem 75. Geburtstag gewidmet , 1950 .

[11]  J. E. Dunn,et al.  Fluids of differential type: Critical review and thermodynamic analysis , 1995 .

[12]  Gerd Grubb,et al.  PROBLÉMES AUX LIMITES NON HOMOGÉNES ET APPLICATIONS , 1969 .

[13]  D. Whiffen Thermodynamics , 1973, Nature.

[14]  Vivette Girault,et al.  Analysis of a two-dimensional grade-two fluid model with a tangential boundary condition , 1999 .

[15]  P. Clément Approximation by finite element functions using local regularization , 1975 .

[16]  L. R. Scott,et al.  Upwind discretizations of a steady grade-two fluid model in two dimensions , 2002 .

[17]  Thomas J. R. Hughes,et al.  A simple scheme for developing ‘upwind’ finite elements , 1978 .

[18]  R. Stenberg Analysis of mixed finite elements methods for the Stokes problem: a unified approach , 1984 .

[19]  A. Sequeira,et al.  A finite element approximation for the steady solution of a second-grade fluid model , 1999 .

[20]  Darryl D. Holm,et al.  The Euler–Poincaré Equations and Semidirect Products with Applications to Continuum Theories , 1998, chao-dyn/9801015.

[21]  Jerrold E. Marsden,et al.  EULER-POINCARE MODELS OF IDEAL FLUIDS WITH NONLINEAR DISPERSION , 1998 .

[22]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[23]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[24]  Jaak Peetre Espaces d'interpolation et théorème de Soboleff , 1966 .

[25]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[26]  Douglas N. Arnold,et al.  Regular Inversion of the Divergence Operator with Dirichlet Boundary Conditions on a Polygon. , 1987 .

[27]  O. Pironneau Finite Element Methods for Fluids , 1990 .

[28]  J. Lions Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .

[29]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[30]  F. Brezzi On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers , 1974 .

[31]  L. R. Scott,et al.  Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials , 1985 .

[32]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[33]  Claes Johnson,et al.  Finite element methods for linear hyperbolic problems , 1984 .

[34]  Vivette Girault,et al.  Hermite interpolation of nonsmooth functions preserving boundary conditions , 2002, Math. Comput..

[35]  Luc Tartar,et al.  Topics in nonlinear analysis , 1978 .

[36]  J. E. Dunn,et al.  Thermodynamics, stability, and boundedness of fluids of complexity 2 and fluids of second grade , 1974 .