The interpoint distance distribution as a descriptor of point patterns, with an application to spatial disease clustering

The topic of this paper is the distribution of the distance between two points distributed independently in space. We illustrate the use of this interpoint distance distribution to describe the characteristics of a set of points within some fixed region. The properties of its sample version, and thus the inference about this function, are discussed both in the discrete and in the continuous setting. We illustrate its use in the detection of spatial clustering by application to a well-known leukaemia data set, and report on the results of a simulation experiment designed to study the power characteristics of the methods within that study region and in an artificial homogenous setting.

[1]  C. R. Rao,et al.  Generalized Inverse of Matrices and its Applications , 1972 .

[2]  A. Whittemore,et al.  A test to detect clusters of disease , 1987 .

[3]  W. Jb Government service and freedom. , 1947 .

[4]  Alan Agresti,et al.  Categorical Data Analysis , 1991, International Encyclopedia of Statistical Science.

[5]  D. Wartenberg,et al.  Detecting disease clusters: the importance of statistical power. , 1990, American journal of epidemiology.

[6]  Bernard W. Silverman,et al.  Short distances, flat triangles and Poisson limits , 1978, Journal of Applied Probability.

[7]  G. G. Caldwell,et al.  Twenty-two years of cancer cluster investigations at the Centers for Disease Control. , 1990, American journal of epidemiology.

[8]  Daryl J. Daley,et al.  An Introduction to the Theory of Point Processes , 2013 .

[9]  S. R. Searle Linear Models , 1971 .

[10]  M. Dwass Modified Randomization Tests for Nonparametric Hypotheses , 1957 .

[11]  M. S. Bartlett,et al.  The spectral analysis of two-dimensional point processes , 1964 .

[12]  K. S. Banerjee Generalized Inverse of Matrices and Its Applications , 1973 .

[13]  T Tango,et al.  A class of tests for detecting 'general' and 'focused' clustering of rare diseases. , 1995, Statistics in medicine.

[14]  A. V. D. Vaart,et al.  Asymptotic Statistics: Frontmatter , 1998 .

[15]  D. Stoyan,et al.  Non-Homogeneous Gibbs Process Models for Forestry — A Case Study , 1998 .

[16]  B. Ripley Statistical inference for spatial processes , 1990 .

[17]  B. Ripley The Second-Order Analysis of Stationary Point Processes , 1976 .

[18]  Yosihiko Ogata,et al.  Likelihood analysis of spatial inhomogeneity for marked point patterns , 1988 .

[19]  E. Lesaffre,et al.  Disease mapping and risk assessment for public health. , 1999 .

[20]  T. Sheng,et al.  The distance between two random points in plane regions , 1985, Advances in Applied Probability.

[21]  A. Craft,et al.  INVESTIGATION OF LEUKAEMIA CLUSTERS BY USE OF A GEOGRAPHICAL ANALYSIS MACHINE , 1988, The Lancet.

[22]  Dale L. Zimmerman,et al.  A Bivariate Cramer-von Mises Type of Test for Spatial Randomness , 1993 .

[23]  P J Diggle,et al.  Second-order analysis of spatial clustering for inhomogeneous populations. , 1991, Biometrics.

[24]  B. Turnbull,et al.  Monitoring for clusters of disease: application to leukemia incidence in upstate New York. , 1990, American journal of epidemiology.

[25]  M Kulldorff,et al.  Spatial disease clusters: detection and inference. , 1995, Statistics in medicine.

[26]  Peter J. Park,et al.  Power comparisons for disease clustering tests , 2003, Comput. Stat. Data Anal..

[27]  Martin Kulldorff,et al.  Statistical Methods for Spatial Epidemiology: Tests for Randomness , 1998 .

[28]  Noel A Cressie,et al.  Statistics for Spatial Data. , 1992 .

[29]  Marcello Pagano,et al.  A Nonparametric Test of Gene Region Heterogeneity Associated With Phenotype , 2002 .

[30]  Peter A. Rogerson,et al.  The Detection of Clusters Using a Spatial Version of the Chi‐Square Goodness‐of‐Fit Statistic , 1999 .

[31]  D. M. Titterington,et al.  Some Methods for Investigating Spatial Clustering, with Epidemiological Applications , 1997 .

[32]  A. V. D. Vaart,et al.  Asymptotic Statistics: U -Statistics , 1998 .

[33]  René Risser,et al.  Traité du calcul des probabilités et de ses applications , 1957 .

[34]  J. Cuzick,et al.  Spatial clustering for inhomogeneous populations , 1990 .

[35]  B. Silverman,et al.  Limit theorems for dissociated random variables , 1976, Advances in Applied Probability.

[36]  Bernard W. Silverman,et al.  RATES OF POISSON CONVERGENCE FOR U-STATISTICS , 1979 .