Nano Gives the Answer: Breaking the Bottleneck of Internal Concentration Polarization with a Nanofiber Composite Forward Osmosis Membrane for a High Water Production Rate

Clean water shortage is one of the biggest global crises. [ 1 ] Thus clean water production and regeneration have become the main concerns. Among a variety of technologies, forward osmosis (FO) is a well-recognized osmotic process for producing clean water because of the low energy input, [ 2 ] as shown in Figure S1 (Supporting Information). Driven by osmotic pressure gradient ( Δ π ) across a semipermeable FO membrane, water diffuses naturally through the membrane, leaving impurities behind. This process has great potential for various applications including wastewater reclamation, [ 3 ] seawater desalination, [ 4 ] and energy production. [ 5 ]

[1]  J. McCutcheon,et al.  Influence of concentrative and dilutive internal concentration polarization on flux behavior in forward osmosis , 2006 .

[2]  R. Baker,et al.  Membranes for power generation by pressure-retarded osmosis , 1981 .

[3]  W. Krantz,et al.  Formation and Characterization of Polyamide Membranes via Interfacial Polymerization , 1994 .

[4]  B. Fabry,et al.  Size-selective separation of macromolecules by nanochannel titania membrane with self-cleaning (declogging) ability. , 2010, Journal of the American Chemical Society.

[5]  V. Freger Kinetics of film formation by interfacial polycondensation. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[6]  Tzahi Y Cath,et al.  Removal of natural steroid hormones from wastewater using membrane contactor processes. , 2006, Environmental science & technology.

[7]  Andrei Ghicov,et al.  Self-organized, free-standing TiO2 nanotube membrane for flow-through photocatalytic applications. , 2007, Nano letters.

[8]  S. Loeb,et al.  Internal polarization in the porous substructure of a semipermeable membrane under pressure-retarded osmosis , 1978 .

[9]  Kai Yu Wang,et al.  Double-Skinned Forward Osmosis Membranes for Reducing Internal Concentration Polarization within the Porous Sublayer , 2010 .

[10]  Lei Zhai,et al.  Decorated Electrospun Fibers Exhibiting Superhydrophobicity , 2007 .

[11]  J. Leckie,et al.  An efficient bicomponent TiO2/SnO2 nanofiber photocatalyst fabricated by electrospinning with a side-by-side dual spinneret method. , 2007, Nano letters.

[12]  Chuyang Y. Tang,et al.  Coupled effects of internal concentration polarization and fouling on flux behavior of forward osmosis membranes during humic acid filtration , 2010 .

[13]  Remko M. Boom,et al.  Microstructures in phase-inversion membranes. Part I. Formation of macrovoids , 1992 .

[14]  Shin-ichi Nakao,et al.  Determination of pore size and pore size distribution: 3. Filtration membranes , 1994 .

[15]  G. Rutledge,et al.  Highly Reactive Multilayer‐Assembled TiO2 Coating on Electrospun Polymer Nanofibers , 2009 .

[16]  Chuyang Y. Tang,et al.  Characteristics and potential applications of a novel forward osmosis hollow fiber membrane , 2010 .

[17]  Younan Xia,et al.  Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays , 2003 .

[18]  J. Georgiadis,et al.  Science and technology for water purification in the coming decades , 2008, Nature.

[19]  Darren Delai Sun,et al.  High‐Performance Multifunctional TiO2 Nanowire Ultrafiltration Membrane with a Hierarchical Layer Structure for Water Treatment , 2009 .

[20]  J. McCutcheon,et al.  Internal concentration polarization in forward osmosis: role of membrane orientation , 2006 .

[21]  Eric M.V. Hoek,et al.  Impacts of reaction and curing conditions on polyamide composite reverse osmosis membrane properties , 2008 .

[22]  Munir Cheryan,et al.  Ultrastructure of the surface of a polysulfone ultrafiltration membrane , 1980 .

[23]  Menachem Elimelech,et al.  Relating performance of thin-film composite forward osmosis membranes to support layer formation and , 2011 .

[24]  Paula T Hammond,et al.  Spraying asymmetry into functional membranes layer-by-layer. , 2009, Nature materials.

[25]  A. Ghosh,et al.  Impacts of support membrane structure and chemistry on polyamide–polysulfone interfacial composite membranes , 2009 .

[26]  Rong Wang,et al.  Synthesis and characterization of flat-sheet thin film composite forward osmosis membranes , 2011 .

[27]  J. Falconer,et al.  Gated ion transport through dense carbon nanotube membranes. , 2010, Journal of the American Chemical Society.

[28]  S. Loeb,et al.  Effect of porous support fabric on osmosis through a Loeb-Sourirajan type asymmetric membrane , 1997 .

[29]  Q. Schiermeier Water: Purification with a pinch of salt , 2008, Nature.

[30]  Younan Xia,et al.  Direct Fabrication of Composite and Ceramic Hollow Nanofibers by Electrospinning , 2004 .

[31]  Andreas Greiner,et al.  Electrospinning: a fascinating method for the preparation of ultrathin fibers. , 2007, Angewandte Chemie.

[32]  T. Ghosh,et al.  Field‐Driven Biofunctionalization of Polymer Fiber Surfaces during Electrospinning , 2007 .

[33]  Raphael Semiat,et al.  Energy issues in desalination processes. , 2008, Environmental science & technology.

[34]  Younan Xia,et al.  Electrospinning of Nanofibers: Reinventing the Wheel? , 2004 .

[35]  Viatcheslav Freger,et al.  Nanoscale Heterogeneity of Polyamide Membranes Formed by Interfacial Polymerization , 2003 .

[36]  Chuyang Y. Tang,et al.  Characterization of novel forward osmosis hollow fiber membranes , 2010 .

[37]  Amy E. Childress,et al.  Forward osmosis: Principles, applications, and recent developments , 2006 .

[38]  Menachem Elimelech,et al.  High performance thin-film composite forward osmosis membrane. , 2010, Environmental science & technology.

[39]  Menachem Elimelech,et al.  Modeling water flux in forward osmosis: Implications for improved membrane design , 2007 .

[40]  C. Grigoropoulos,et al.  Fast Mass Transport Through Sub-2-Nanometer Carbon Nanotubes , 2006, Science.