Detection system for microimaging with neutrons

A new high-resolution detector setup for neutron imaging has been developed based on infinity-corrected optics with high light collection, combined with customized mounting hard- ware. The system can easily be installed, handled and fitted to any existing facility, avoiding the necessity of complex optical systems or further improved electronics (CCD). This is the first time optical magnification higher than 1:1 has been used with scintillator-based neutron detectors, as well as the first implementation of infinity corrected optics for neutron imaging, achieving the smallest yet reported effective pixel size of 3.375 mm. A novel transparent crystal scintillator (GGG crystal) has been implemented with neutrons for the first time to overcome limitations of traditional powder scintillators (Li6/ZnS, Gadox). The standardized procedure for resolution mea- surements with the Modulation Transfer Function (MTF) is summarized to facilitate comparison between instruments and facilities. Using this new detector setup, a resolution of 14.8 mm with a field of view of 6 mm�6 mm has been achieved while maintaining reasonable count times. These advances open a wide range of new possible research applications and allow the potential for additional future developments.

[1]  J. Banhart,et al.  Investigation of the skin effect in the bulk of electrical conductors with spin-polarized neutron radiography , 2008 .

[2]  Combined local current distribution measurements and high resolution neutron radiography of operating Direct Methanol Fuel Cells , 2009 .

[3]  M. Arai,et al.  Neutron Sources and Facilities , 2009 .

[4]  D. F. Vecchia,et al.  In Situ Fuel Cell Water Metrology at the NIST Neutron Imaging Facility , 2010 .

[5]  C. David,et al.  Three-dimensional imaging of magnetic domains. , 2010, Nature communications.

[6]  Alexander Wokaun,et al.  In situ diagnostic of two-phase flow phenomena in polymer electrolyte fuel cells by neutron imaging: Part A. Experimental, data treatment, and quantification , 2005 .

[7]  N. Kardjilov,et al.  Wavelength tunable device for neutron radiography and tomography , 2006 .

[8]  Michael D. Abràmoff,et al.  Image processing with ImageJ , 2004 .

[9]  J. Glodo,et al.  GdI3:Ce - A New Gamma and Neutron Scintillator , 2006, 2006 IEEE Nuclear Science Symposium Conference Record.

[10]  P. Böni,et al.  A polarizing neutron periscope for neutron imaging , 2009 .

[11]  P. Dorenbos,et al.  Inorganic thermal-neutron scintillators , 2004 .

[12]  Burkhard Schillinger,et al.  Construction and assembly of the neutron radiography and tomography facility ANTARES at FRM II , 2005 .

[13]  Max Born,et al.  Principles of optics - electromagnetic theory of propagation, interference and diffraction of light (7. ed.) , 1999 .

[14]  A. Sinha,et al.  Applications of digital neutron imaging at BARC (India) using reactor and nonreactor sources , 2005, IEEE Transactions on Nuclear Science.

[15]  Y. Kato,et al.  Neutron imaging of micron-size structures by color center formation in LiF crystals , 2010 .

[16]  Nikolay Kardjilov,et al.  Observation of Magnetic Domains in Insulation-Coated Electrical Steels by Neutron Dark-Field Imaging , 2010 .

[17]  Alan K. Thompson,et al.  Neutron Imaging Technique for In Situ Measurement of Water Transport Gradients within Nafion in Polymer Electrolyte Fuel Cells , 1999 .

[18]  Peter Vontobel,et al.  Design and optimization of a CCD-neutron radiography detector , 2000 .

[19]  V. Nagarkar,et al.  A new scintillator structure for thermal neutron imaging , 2007 .

[20]  N. Kardjilov,et al.  Polarized neutron imaging: A spin-echo approach , 2011 .

[21]  Andreas Koch,et al.  X-ray imaging with submicrometer resolution employing transparent luminescent screens , 1998 .

[22]  I. Manke,et al.  The new V12 ultra-small-angle neutron scattering and tomography instrument at the Hahn–Meitner Institut , 2006 .

[23]  J. Banhart,et al.  Characterization of water exchange and two-phase flow in porous gas diffusion materials by hydrogen-deuterium contrast neutron radiography , 2008 .

[24]  Kunio Doi,et al.  A simple method for determining the modulation transfer function in digital radiography , 1992, IEEE Trans. Medical Imaging.

[25]  John Banhart,et al.  Neutron Bragg-edge-imaging for strain mapping under in situ tensile loading , 2011 .

[26]  Pierre Boillat,et al.  The micro-setup for neutron imaging: A major step forward to improve the spatial resolution , 2007 .

[27]  Ulrich Bonse,et al.  X-ray computed microtomography (μCT) using synchrotron radiation (SR) , 1996 .

[28]  N. Kardjilov,et al.  Estimation of water flow velocity in small plants using cold neutron imaging with D2O tracer , 2009 .

[29]  Werner Lehnert,et al.  Quasi–in situ neutron tomography on polymer electrolyte membrane fuel cell stacks , 2007 .

[30]  Ehsan Samei,et al.  Comparison of edge analysis techniques for the determination of the MTF of digital radiographic systems , 2005, Physics in medicine and biology.

[31]  Bernhard Illerhaus,et al.  X-ray refraction topography and computed tomography for NDE of lightweight materials (Keynote Paper) , 2005, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[32]  P. Novák,et al.  In situ neutron radiography of lithium-ion batteries: the gas evolution on graphite electrodes during the charging , 2004 .

[33]  E. Lehmann,et al.  Design of a new CCD-camera neutron radiography detector , 1997 .

[34]  H. Graafsma,et al.  DETECTORS FOR SYNCHROTRON TOMOGRAPHY , 2008 .

[35]  Eberhard Lehmann,et al.  Energy-selective neutron transmission imaging at a pulsed source , 2007 .

[36]  R. K. Swank,et al.  Calculation of modulation transfer functions of x-ray fluorescent screens. , 1973, Applied optics.

[37]  The influence of gas diffusion layer wettability on direct methanol fuel cell performance: A combined local current distribution and high resolution neutron radiography study , 2010 .

[38]  Lord Rayleigh On the Theory of Optical Images, with Special Reference to the Microscope , 1903 .

[39]  W. B. Feller,et al.  High-resolution neutron radiography with microchannel plates: Proof-of-principle experiments at PSI , 2009 .

[40]  Hartmut Abele,et al.  High flux neutron imaging for high-speed radiography, dynamic tomography and strongly absorbing materials , 2005 .

[41]  J. Banhart,et al.  The new cold neutron radiography and tomography instrument CONRAD at HMI Berlin , 2006 .

[42]  N. Kardjilov,et al.  Scattering corrections in neutron radiography using point scattered functions , 2005 .

[43]  E Steichele,et al.  The design of the neutron radiography and tomography facility at the new research reactor FRM-II at Technical University Munich. , 2004, Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine.

[44]  H. Bilheux,et al.  Time-Resolved High Resolution Neutron Imaging Studies at the ORNL Spallation Neutron Source , 2009, IEEE Transactions on Nuclear Science.

[45]  F. Pfeiffer,et al.  Neutron dark-field tomography. , 2008, Physical review letters.

[46]  Simon Zabler,et al.  Coarsening of grain-refined semi-solid Al-Ge32 alloy: X-ray microtomography and in situ radiography , 2007 .

[47]  Alexander Wokaun,et al.  In situ observation of the water distribution across a PEFC using high resolution neutron radiography , 2008 .

[48]  Burkhard Schillinger,et al.  3D neutron tomography:: recent developments and first steps towards reverse engineering , 1999 .

[49]  C. David,et al.  Highly absorbing gadolinium test device to characterize the performance of neutron imaging detector systems. , 2007, The Review of scientific instruments.

[50]  J. Banhart,et al.  Neutron imaging in materials science , 2011 .

[51]  Avinash C. Kak,et al.  Principles of computerized tomographic imaging , 2001, Classics in applied mathematics.

[52]  J. Goodman Introduction to Fourier optics , 1969 .

[53]  A. Rack,et al.  LSO-Based Single Crystal Film Scintillator for Synchrotron-Based Hard X-Ray Micro-Imaging , 2009, IEEE Transactions on Nuclear Science.

[54]  Steven B. Smith,et al.  Digital Signal Processing: A Practical Guide for Engineers and Scientists , 2002 .

[55]  Werner Lehnert,et al.  Investigation of water evolution and transport in fuel cells with high resolution synchrotron x-ray radiography , 2007 .

[56]  R. Sec. XV. On the theory of optical images, with special reference to the microscope , 2009 .

[57]  P. Bingham,et al.  Mathematics of Neutron Imaging , 2009 .

[58]  Eberhard Lehmann,et al.  Neutron imaging at PSI: a promising tool in materials science and technology , 2010 .

[59]  L. Crow Neutron Detectors for Imaging , 2009 .

[60]  A. A. Harms,et al.  Mathematics and physics of neutron radiography , 1986 .

[61]  J. Banhart,et al.  New trends in neutron imaging , 2009 .

[62]  O. Siegmund,et al.  High Spatial and Temporal Resolution Neutron Imaging With Microchannel Plate Detectors , 2009, IEEE Transactions on Nuclear Science.

[63]  Neutron depolarisation imaging: Stress measurements by magnetostriction effects in Ni foils , 2011 .

[64]  John Banhart,et al.  Neutron tomography instrument CONRAD at HZB , 2011 .

[65]  J. T. Cremer,et al.  Biological imaging with a neutron microscope , 2004 .

[66]  Eberhard Lehmann,et al.  Neutron imaging—detector options and practical results , 2004 .

[67]  John Banhart,et al.  Advances in neutron radiography and tomography , 2009 .

[68]  Nikolay Kardjilov,et al.  High-resolution investigations of edge effects in neutron imaging , 2009 .

[69]  S. Biegalski,et al.  The measurement of the presampled MTF of a high spatial resolution neutron imaging system , 2007 .

[70]  G. Gillies,et al.  Performance characteristics of scintillators for use in an electronic neutron imaging system for neutron radiography , 1997 .

[71]  Detlef Stolten,et al.  Large area high resolution neutron imaging detector for fuel cell research , 2011 .

[72]  Veerle Cnudde,et al.  High-speed neutron tomography of dynamic processes , 2005 .

[73]  F. C. de Beer,et al.  Characteristics of the neutron/X-ray tomography system at the SANRAD facility in South Africa , 2005 .

[74]  John Banhart,et al.  Revealing microstructural inhomogeneities with dark-field neutron imaging , 2010 .

[75]  Jason McPhate,et al.  On the possibility to image thermal and cold neutron with sub-15μm spatial resolution , 2008 .

[76]  Richard H. Pantell,et al.  Biological imaging with a neutron microscope , 2004, SPIE Optics + Photonics.

[77]  M. Born Principles of Optics : Electromagnetic theory of propagation , 1970 .

[78]  W. B. Feller,et al.  Scatter rejection in quantitative thermal and cold neutron imaging , 2011 .

[79]  K. Soyama,et al.  Preliminary examination of a CCD camera with a scintillator coated fiber optic plate for neutron imaging , 2004 .

[80]  E. Lehmann,et al.  CNR¿the new beamline for cold neutron imaging at the Swiss spallation neutron source SINQ , 2005 .

[81]  S. Funahashi New instruments at the upgraded JRR-3 reactor , 1991 .

[82]  T. Martin,et al.  Recent developments in X-ray imaging with micrometer spatial resolution. , 2006, Journal of synchrotron radiation.

[83]  H. Queisser,et al.  High‐resolution direct‐display x‐ray topography , 1975 .

[84]  E. Lehmann,et al.  The neutron micro-tomography setup at PSI and its use for research purposes and engineering applications , 2009 .

[85]  David L. Jacobson,et al.  In situ neutron imaging technique for evaluation of water management systems in operating PEM fuel cells , 2004 .

[86]  A. Wokaun,et al.  Neutron Imaging Resolution Improvements Optimized for Fuel Cell Applications , 2010 .

[87]  John Banhart,et al.  Three-dimensional imaging of magnetic fields with polarized neutrons , 2008 .

[88]  N. Kardjilov,et al.  Scattering correction algorithm for neutron radiography and tomography tested at facilities with different beam characteristics , 2006 .

[89]  A. R. Spowart Measurement of the absolute scintillation efficiency of granular and glass neutron scintillators , 1969 .

[90]  Imaging with polarized neutrons , 2009 .

[91]  O. Bunk,et al.  Neutron decoherence imaging for visualizing bulk magnetic domain structures. , 2008, Physical review letters.

[92]  Daniel S. Hussey,et al.  New neutron imaging facility at the NIST , 2005 .

[93]  Manuel Dierick,et al.  New features in cold neutron radiography and tomography Part I: thinner scintillators and a neutron velocity selector to improve the spatial resolution , 2002 .

[94]  D. Penumadu,et al.  A highly adaptive detector system for high resolution neutron imaging , 2011 .

[95]  J. Banhart,et al.  Combined neutron radiography and locally resolved current density measurements of operating PEM fuel cells , 2008 .

[96]  A. V. Fedorov,et al.  Conceptual design of a novel high-frame-rate fast-neutron radiography facility , 2005 .

[97]  E. Samei,et al.  A method for measuring the presampled MTF of digital radiographic systems using an edge test device. , 1998, Medical physics.

[98]  N. Kardjilov,et al.  Imaging of an operating LaNi4.8Al0.2–based hydrogen storage container , 2011 .

[99]  S. A. Werner,et al.  Imaging: Phase radiography with neutrons , 2000, Nature.

[100]  Ulrich Neitzel,et al.  Accuracy of a simple method for deriving the presampled modulation transfer function of a digital radiographic system from an edge image. , 2003, Medical physics.