The Smoothed Spectral Abscissa for Robust Stability Optimization
暂无分享,去创建一个
Wim Michiels | Moritz Diehl | Stefan Vandewalle | Joris Vanbiervliet | Bart Vandereycken | M. Diehl | Bart Vandereycken | S. Vandewalle | W. Michiels | J. Vanbiervliet
[1] Wim Michiels,et al. A NONSMOOTH OPTIMISATION APPROACH FOR THE STABILISATION OF TIME-DELAY SYSTEMS , 2008 .
[2] C. Loan. The ubiquitous Kronecker product , 2000 .
[3] A. Lewis,et al. Two numerical methods for optimizing matrix stability , 2002 .
[4] Pierre Apkarian,et al. Nonsmooth H∞ synthesis , 2005, IEEE Trans. Autom. Control..
[5] M. Overton,et al. Differential properties of the spectral abscissa and the spectral radius for analytic matrix-valued mappings , 1994 .
[6] Venkataramanan Balakrishnan,et al. Semidefinite programming duality and linear time-invariant systems , 2003, IEEE Trans. Autom. Control..
[7] Musa Mammadov,et al. Synthesis via a Nonsmooth , Nonconvex Optimization Approach , 2005 .
[8] C. Loan. The Sensitivity of the Matrix Exponential , 1977 .
[9] Adrian S. Lewis,et al. Optimization and Pseudospectra, with Applications to Robust Stability , 2003, SIAM J. Matrix Anal. Appl..
[10] V. Mehrmann,et al. A numerically stable, structure preserving method for computing the eigenvalues of real Hamiltonian or symplectic pencils , 1998 .
[11] Adrian S. Lewis,et al. A Robust Gradient Sampling Algorithm for Nonsmooth, Nonconvex Optimization , 2005, SIAM J. Optim..
[12] Richard H. Bartels,et al. Algorithm 432 [C2]: Solution of the matrix equation AX + XB = C [F4] , 1972, Commun. ACM.
[13] Wim Michiels,et al. An eigenvalue based approach for the robust stabilization of linear time-delay systems , 2003 .
[14] J. Lofberg,et al. YALMIP : a toolbox for modeling and optimization in MATLAB , 2004, 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508).
[15] Jos F. Sturm,et al. A Matlab toolbox for optimization over symmetric cones , 1999 .
[16] Hugues Mounier,et al. TIME DELAY SYSTEMS , 2011 .
[17] Musa Mammadov,et al. H ∞ Synthesis via a Nonsmooth, Nonconvex Optimization Approach , 2005 .
[18] P. Lancaster. Explicit Solutions of Linear Matrix Equations , 1970 .
[19] D. Anderson,et al. Algorithms for minimization without derivatives , 1974 .
[20] J. Doyle,et al. Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.
[21] Moritz Diehl,et al. Stability Optimization of Hybrid Periodic Systems via a Smooth Criterion , 2009, IEEE Transactions on Automatic Control.
[22] D. Noll,et al. SPECTRAL BUNDLE METHODS FOR NON-CONVEX MAXIMUM EIGENVALUE FUNCTIONS. PART 1: FIRST-ORDER METHODS , 2005 .
[23] L. Trefethen,et al. Spectra and Pseudospectra , 2020 .
[24] Alexander Graham,et al. Kronecker Products and Matrix Calculus: With Applications , 1981 .
[25] S. Godunov. Ordinary Differential Equations With Constant Coefficient , 1997 .
[26] Tongxing Lu,et al. Solution of the matrix equation AX−XB=C , 2005, Computing.
[27] A. Lewis,et al. A Nonsmooth, Nonconvex Optimization Approach to Robust Stabilization by Static Output Feedback and Low-Order Controllers , 2003 .
[28] A. Lewis,et al. Robust stability and a criss‐cross algorithm for pseudospectra , 2003 .
[29] Michael L. Overton,et al. Digital Object Identifier (DOI) 10.1007/s101070100225 , 2022 .
[30] R. Brent. Table errata: Algorithms for minimization without derivatives (Prentice-Hall, Englewood Cliffs, N. J., 1973) , 1975 .
[31] Adrian S. Lewis,et al. HIFOO - A MATLAB package for fixed-order controller design and H ∞ optimization , 2006 .