The Smoothed Spectral Abscissa for Robust Stability Optimization

This paper concerns the stability optimization of (parameterized) matrices $A(x)$, a problem typically arising in the design of fixed-order or fixed-structured feedback controllers. It is well known that the minimization of the spectral abscissa function $\alpha(A)$ gives rise to very difficult optimization problems, since $\alpha(A)$ is not everywhere differentiable and even not everywhere Lipschitz. We therefore propose a new stability measure, namely, the smoothed spectral abscissa $\tilde\alpha_{\epsilon}(A)$, which is based on the inversion of a relaxed $H_2$-type cost function. The regularization parameter $\epsilon$ allows tuning the degree of smoothness. For $\epsilon$ approaching zero, the smoothed spectral abscissa converges towards the nonsmooth spectral abscissa from above so that $\tilde\alpha_{\epsilon}(A)\leq0$ guarantees asymptotic stability. Evaluation of the smoothed spectral abscissa and its derivatives w.r.t. matrix parameters $x$ can be performed at the cost of solving a primal-dual Lyapunov equation pair, allowing for an efficient integration into a derivative-based optimization framework. Two optimization problems are considered: On the one hand, the minimization of the smoothed spectral abscissa $\tilde\alpha_{\epsilon}(A(x))$ as a function of the matrix parameters for a fixed value of $\epsilon$, and, on the other hand, the maximization of $\epsilon$ such that the stability requirement $\tilde\alpha_{\epsilon}(A(x))\leq0$ is still satisfied. The latter problem can be interpreted as an $H_2$-norm minimization problem, and its solution additionally implies an upper bound on the corresponding $H_\infty$-norm or a lower bound on the distance to instability. In both cases, additional equality and inequality constraints on the variables can be naturally taken into account in the optimization problem.

[1]  Wim Michiels,et al.  A NONSMOOTH OPTIMISATION APPROACH FOR THE STABILISATION OF TIME-DELAY SYSTEMS , 2008 .

[2]  C. Loan The ubiquitous Kronecker product , 2000 .

[3]  A. Lewis,et al.  Two numerical methods for optimizing matrix stability , 2002 .

[4]  Pierre Apkarian,et al.  Nonsmooth H∞ synthesis , 2005, IEEE Trans. Autom. Control..

[5]  M. Overton,et al.  Differential properties of the spectral abscissa and the spectral radius for analytic matrix-valued mappings , 1994 .

[6]  Venkataramanan Balakrishnan,et al.  Semidefinite programming duality and linear time-invariant systems , 2003, IEEE Trans. Autom. Control..

[7]  Musa Mammadov,et al.  Synthesis via a Nonsmooth , Nonconvex Optimization Approach , 2005 .

[8]  C. Loan The Sensitivity of the Matrix Exponential , 1977 .

[9]  Adrian S. Lewis,et al.  Optimization and Pseudospectra, with Applications to Robust Stability , 2003, SIAM J. Matrix Anal. Appl..

[10]  V. Mehrmann,et al.  A numerically stable, structure preserving method for computing the eigenvalues of real Hamiltonian or symplectic pencils , 1998 .

[11]  Adrian S. Lewis,et al.  A Robust Gradient Sampling Algorithm for Nonsmooth, Nonconvex Optimization , 2005, SIAM J. Optim..

[12]  Richard H. Bartels,et al.  Algorithm 432 [C2]: Solution of the matrix equation AX + XB = C [F4] , 1972, Commun. ACM.

[13]  Wim Michiels,et al.  An eigenvalue based approach for the robust stabilization of linear time-delay systems , 2003 .

[14]  J. Lofberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004, 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508).

[15]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[16]  Hugues Mounier,et al.  TIME DELAY SYSTEMS , 2011 .

[17]  Musa Mammadov,et al.  H ∞ Synthesis via a Nonsmooth, Nonconvex Optimization Approach , 2005 .

[18]  P. Lancaster Explicit Solutions of Linear Matrix Equations , 1970 .

[19]  D. Anderson,et al.  Algorithms for minimization without derivatives , 1974 .

[20]  J. Doyle,et al.  Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.

[21]  Moritz Diehl,et al.  Stability Optimization of Hybrid Periodic Systems via a Smooth Criterion , 2009, IEEE Transactions on Automatic Control.

[22]  D. Noll,et al.  SPECTRAL BUNDLE METHODS FOR NON-CONVEX MAXIMUM EIGENVALUE FUNCTIONS. PART 1: FIRST-ORDER METHODS , 2005 .

[23]  L. Trefethen,et al.  Spectra and Pseudospectra , 2020 .

[24]  Alexander Graham,et al.  Kronecker Products and Matrix Calculus: With Applications , 1981 .

[25]  S. Godunov Ordinary Differential Equations With Constant Coefficient , 1997 .

[26]  Tongxing Lu,et al.  Solution of the matrix equation AX−XB=C , 2005, Computing.

[27]  A. Lewis,et al.  A Nonsmooth, Nonconvex Optimization Approach to Robust Stabilization by Static Output Feedback and Low-Order Controllers , 2003 .

[28]  A. Lewis,et al.  Robust stability and a criss‐cross algorithm for pseudospectra , 2003 .

[29]  Michael L. Overton,et al.  Digital Object Identifier (DOI) 10.1007/s101070100225 , 2022 .

[30]  R. Brent Table errata: Algorithms for minimization without derivatives (Prentice-Hall, Englewood Cliffs, N. J., 1973) , 1975 .

[31]  Adrian S. Lewis,et al.  HIFOO - A MATLAB package for fixed-order controller design and H ∞ optimization , 2006 .