Oppositional backtracking search optimization algorithm for parameter identification of hyperchaotic systems

Parameter identification is an important issue in nonlinear science and has received increasing interest in the recent years. In this paper, an oppositional backtracking search optimization algorithm is proposed to solve the parameter identification of hyperchaotic system. The backtracking search optimization algorithm provides a new alternative for population-based heuristic search. To increase the diversity of initial population and to accelerate the convergence speed, the opposition-based learning method is employed in the backtracking search optimization algorithm for population initialization as well as for generation jumping. Numerical simulations on several typical hyperchaotic systems are conducted to demonstrate the effectiveness and robustness of the proposed scheme.

[1]  Zhijian Wu,et al.  Hybrid Differential Evolution Algorithm with Chaos and Generalized Opposition-Based Learning , 2010, ISICA.

[2]  Emad E. Mahmoud,et al.  Controlling hyperchaotic complex systems with unknown parameters based on adaptive passive method , 2013 .

[3]  Zhijian Wu,et al.  Enhancing particle swarm optimization using generalized opposition-based learning , 2011, Inf. Sci..

[4]  Emad E. Mahmoud,et al.  Dynamics and synchronization of new hyperchaotic complex Lorenz system , 2012, Math. Comput. Model..

[5]  Vincenzo Sciacca,et al.  Intermittent and passivity based control strategies for a hyperchaotic system , 2013, Appl. Math. Comput..

[6]  Chang Chen,et al.  Parameter estimation of chaotic systems by an oppositional seeker optimization algorithm , 2014 .

[7]  Shihua Chen,et al.  Adaptive synchronization of uncertain hyperchaotic systems based on parameter identification , 2005 .

[8]  Lin Shi,et al.  Analysis and control of a hyperchaotic system with only one nonlinear term , 2012 .

[9]  Emad E. Mahmoud,et al.  Phase and antiphase synchronization of two identical hyperchaotic complex nonlinear systems , 2010 .

[10]  Bo Peng,et al.  Differential evolution algorithm-based parameter estimation for chaotic systems , 2009 .

[11]  Xingyuan Wang,et al.  Impulsive control and synchronization of a new unified hyperchaotic system with varying control gains and impulsive intervals , 2012 .

[12]  Wei Pan,et al.  On joint identification of the feedback parameters for hyperchaotic systems: An optimization-based approach , 2011 .

[13]  Emad E. Mahmoud,et al.  On projective synchronization of hyperchaotic complex nonlinear systems based on passive theory for secure communications , 2013 .

[14]  A. E. Matouk,et al.  Achieving synchronization between the fractional-order hyperchaotic Novel and Chen systems via a new nonlinear control technique , 2014, Appl. Math. Lett..

[15]  Guanrong Chen,et al.  A new hyperchaotic Lorenz‐type system: Generation, analysis, and implementation , 2011, Int. J. Circuit Theory Appl..

[16]  M.M.A. Salama,et al.  Opposition-Based Differential Evolution , 2008, IEEE Transactions on Evolutionary Computation.

[17]  Emad E. Mahmoud,et al.  On the hyperchaotic complex Lü system , 2009 .

[18]  Jian Lin,et al.  Parameter estimation for time-delay chaotic systems by hybrid biogeography-based optimization , 2014 .

[19]  Xiaoqing Lu,et al.  Estimation of unknown parameters and adaptive synchronization of hyperchaotic systems , 2009 .

[20]  K. Thamilmaran,et al.  Hyperchaos in SC-CNN based modified canonical Chua’s circuit , 2014 .

[21]  Rong Zhang,et al.  Parameters identification and adaptive full state hybrid projective synchronization of chaotic (hyper-chaotic) systems , 2007 .

[22]  Ling Wang,et al.  Parameter estimation for chaotic systems by particle swarm optimization , 2007 .

[23]  Mohammad Haeri,et al.  Impulsive synchronization of Chen's hyperchaotic system , 2006 .

[24]  Lan Xu,et al.  Adaptive impulsive synchronization for a class of fractional-order chaotic and hyperchaotic systems , 2014 .

[25]  James Kennedy,et al.  Defining a Standard for Particle Swarm Optimization , 2007, 2007 IEEE Swarm Intelligence Symposium.

[26]  Pinar Çivicioglu,et al.  Backtracking Search Optimization Algorithm for numerical optimization problems , 2013, Appl. Math. Comput..

[27]  Ahmed Sadek Hegazi,et al.  Dynamical behaviors and synchronization in the fractional order hyperchaotic Chen system , 2011, Appl. Math. Lett..

[28]  G. Mahmoud,et al.  Lag synchronization of hyperchaotic complex nonlinear systems , 2012 .

[29]  S. Effati,et al.  Hyperchaos control of the hyperchaotic Chen system by optimal control design , 2013 .

[30]  R. Konnur Synchronization-based approach for estimating all model parameters of chaotic systems. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  Hamid R. Tizhoosh,et al.  Opposition-Based Learning: A New Scheme for Machine Intelligence , 2005, International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC'06).

[32]  M. Mossa Al-sawalha,et al.  Robust active sliding mode anti-synchronization of hyperchaotic systems with uncertainties and external disturbances , 2012 .

[33]  Ye Xu,et al.  An effective hybrid biogeography-based optimization algorithm for parameter estimation of chaotic systems , 2011, Expert Syst. Appl..

[34]  Emad E. Mahmoud,et al.  Complex complete synchronization of two nonidentical hyperchaotic complex nonlinear systems , 2014 .

[35]  Qingguo Li,et al.  Chaos synchronization of a new hyperchaotic system , 2010, Appl. Math. Comput..

[36]  Emad E. Mahmoud,et al.  Complete synchronization of chaotic complex nonlinear systems with uncertain parameters , 2010 .

[37]  O. Rössler An equation for hyperchaos , 1979 .

[38]  Jun Wang,et al.  Parameter estimation for chaotic systems using a hybrid adaptive cuckoo search with simulated annealing algorithm. , 2014, Chaos.