Brain DNA methylomic analysis of frontotemporal lobar degeneration reveals OTUD4 in shared dysregulated signatures across pathological subtypes

[1]  S. Fernández-Barrés,et al.  A meta-analysis of epigenome-wide association studies on pregnancy vitamin B12 concentrations and offspring DNA methylation , 2023, Epigenetics.

[2]  I. Fyfe Surprise neurovascular dysfunction in frontotemporal dementia , 2022, Nature Reviews Neurology.

[3]  J. V. van Swieten,et al.  Neurovascular dysfunction in GRN-associated frontotemporal dementia identified by single-nucleus RNA sequencing of human cerebral cortex , 2022, Nature Neuroscience.

[4]  D. Biard,et al.  HS3ST2 expression induces the cell autonomous aggregation of tau , 2022, Scientific Reports.

[5]  K. Winklhofer,et al.  The Role of Ubiquitin in Regulating Stress Granule Dynamics , 2022, Frontiers in Physiology.

[6]  A. Buchberger,et al.  Role of the Ubiquitin System in Stress Granule Metabolism , 2022, International journal of molecular sciences.

[7]  J. Mill,et al.  DNA methylation signatures of Alzheimer’s disease neuropathology in the cortex are primarily driven by variation in non-neuronal cell-types , 2022, bioRxiv.

[8]  Anna L. Brown,et al.  TDP-43 loss and ALS-risk SNPs drive mis-splicing and depletion of UNC13A , 2022, Nature.

[9]  L. Petrucelli,et al.  Shared brain transcriptomic signature in TDP-43 type A FTLD patients with or without GRN mutations , 2021, Brain : a journal of neurology.

[10]  A. Jeans,et al.  Friend or Foe? The Varied Faces of Homeostatic Synaptic Plasticity in Neurodegenerative Disease , 2021, Frontiers in Cellular Neuroscience.

[11]  Cory C. Funk,et al.  Alzheimer’s disease and progressive supranuclear palsy share similar transcriptomic changes in distinct brain regions , 2021, The Journal of clinical investigation.

[12]  N. Huber,et al.  Deficient neurotransmitter systems and synaptic function in frontotemporal lobar degeneration—Insights into disease mechanisms and current therapeutic approaches , 2021, Molecular Psychiatry.

[13]  S. Müller Managing stress granule disassembly with ubiquitin and its cousin , 2021, Signal Transduction and Targeted Therapy.

[14]  T. Raj,et al.  Transcriptomic analysis of frontotemporal lobar degeneration with TDP-43 pathology reveals cellular alterations across multiple brain regions , 2021, Acta Neuropathologica.

[15]  Evan Z. Macosko,et al.  Comparative cellular analysis of motor cortex in human, marmoset and mouse , 2021, Nature.

[16]  Xiaochen Bo,et al.  clusterProfiler 4.0: A universal enrichment tool for interpreting omics data , 2021, Innovation.

[17]  M. Strong,et al.  The Integral Role of RNA in Stress Granule Formation and Function , 2021, Frontiers in Cell and Developmental Biology.

[18]  R. Rissman,et al.  Transcriptome analyses reveal tau isoform-driven changes in transposable element and gene expression , 2021, bioRxiv.

[19]  L. Petrucelli,et al.  TIA1 potentiates tau phase separation and promotes generation of toxic oligomeric tau , 2021, Proceedings of the National Academy of Sciences.

[20]  S. Haggarty,et al.  Glutamatergic dysfunction precedes neuron loss in cerebral organoids with MAPT mutation , 2021, bioRxiv.

[21]  Cory C. Funk,et al.  Conserved Architecture of Brain Transcriptome Changes between Alzheimer’s Disease and Progressive Supranuclear Palsy in Pathologically Affected and Unaffected Regions , 2021, bioRxiv.

[22]  D. Komander,et al.  Ubiquitin signalling in neurodegeneration: mechanisms and therapeutic opportunities , 2021, Cell Death & Differentiation.

[23]  C. Blauwendraat,et al.  A multi-omics dataset for the analysis of frontotemporal dementia genetic subtypes , 2020, bioRxiv.

[24]  Juan I. Young,et al.  Epigenome-wide meta-analysis of DNA methylation differences in prefrontal cortex implicates the immune processes in Alzheimer’s disease , 2020, Nature Communications.

[25]  G. Carpentier,et al.  3-O-sulfated heparan sulfate interactors target synaptic adhesion molecules from neonatal mouse brain and inhibit neural activity and synaptogenesis in vitro , 2020, Scientific Reports.

[26]  M. Larsen,et al.  Glutamate-glutamine homeostasis is perturbed in neurons and astrocytes derived from patient iPSC models of frontotemporal dementia , 2020, Molecular Brain.

[27]  Min Su,et al.  The functions and mechanisms of prefoldin complex and prefoldin-subunits , 2020, Cell & Bioscience.

[28]  M. Larsen,et al.  Glutamate-glutamine homeostasis is perturbed in neurons and astrocytes derived from patient iPSC models of frontotemporal dementia , 2020, Molecular Brain.

[29]  W. Heywood,et al.  Investigation of pathology, expression and proteomic profiles in human TREM2 variant postmortem brains with and without Alzheimer’s disease , 2020, Brain pathology.

[30]  Alan J. Thomas,et al.  A meta-analysis of epigenome-wide association studies in Alzheimer’s disease highlights novel differentially methylated loci across cortex , 2020, Nature Communications.

[31]  Memory,et al.  Shared , 2020, Definitions.

[32]  C. van Broeckhoven,et al.  Stress granule mediated protein aggregation and underlying gene defects in the FTD-ALS spectrum , 2020, Neurobiology of Disease.

[33]  Gerta Rücker,et al.  How to perform a meta-analysis with R: a practical tutorial , 2019, Evidence-Based Mental Health.

[34]  R. Balázs,et al.  White matter DNA methylation profiling reveals deregulation of HIP1, LMAN2, MOBP, and other loci in multiple system atrophy , 2019, Acta Neuropathologica.

[35]  S. Schoch,et al.  New roles for the de-ubiquitylating enzyme OTUD4 in an RNA–protein network and RNA granules , 2019, Journal of Cell Science.

[36]  Manolis Kellis,et al.  Single-cell transcriptomic analysis of Alzheimer’s disease , 2019, Nature.

[37]  B. Borroni,et al.  Toward a Glutamate Hypothesis of Frontotemporal Dementia , 2019, Front. Neurosci..

[38]  Cory C. Funk,et al.  Divergent brain gene expression patterns associate with distinct cell-specific tau neuropathology traits in progressive supranuclear palsy , 2018, Acta Neuropathologica.

[39]  Ashley R. Jones,et al.  Joint genome-wide association study of progressive supranuclear palsy identifies novel susceptibility loci and genetic correlation to neurodegenerative diseases , 2018, Molecular Neurodegeneration.

[40]  D. Dickson,et al.  Epigenome-wide DNA methylation profiling in Progressive Supranuclear Palsy reveals major changes at DLX1 , 2018, Nature Communications.

[41]  K. Blennow,et al.  The presubiculum is preserved from neurodegenerative changes in Alzheimer’s disease , 2018, Acta neuropathologica communications.

[42]  G. Schellenberg,et al.  Replication of progressive supranuclear palsy genome-wide association study identifies SLCO1A2 and DUSP10 as new susceptibility loci , 2018, Molecular Neurodegeneration.

[43]  Shuo-Chien Ling Synaptic Paths to Neurodegeneration: The Emerging Role of TDP-43 and FUS in Synaptic Functions , 2018, Neural plasticity.

[44]  S. Gygi,et al.  OTUD4 Is a Phospho-Activated K63 Deubiquitinase that Regulates MyD88-Dependent Signaling. , 2018, Molecular cell.

[45]  J. Rowe,et al.  Neurotransmitter deficits from frontotemporal lobar degeneration , 2018, Brain : a journal of neurology.

[46]  Yuan Tian,et al.  ChAMP: updated methylation analysis pipeline for Illumina BeadChips , 2017, Bioinform..

[47]  John Hardy,et al.  An additional k-means clustering step improves the biological features of WGCNA gene co-expression networks , 2017, BMC Systems Biology.

[48]  A. Hyman,et al.  An aberrant phase transition of stress granules triggered by misfolded protein and prevented by chaperone function , 2017, The EMBO journal.

[49]  Anders M. Dale,et al.  Shared genetic risk between corticobasal degeneration, progressive supranuclear palsy, and frontotemporal dementia , 2017, Acta Neuropathologica.

[50]  Qi Ding,et al.  Enhanced expression of ADCY1 underlies aberrant neuronal signalling and behaviour in a syndromic autism model , 2017, Nature Communications.

[51]  Andrew D. Rouillard,et al.  The harmonizome: a collection of processed datasets gathered to serve and mine knowledge about genes and proteins , 2016, Database J. Biol. Databases Curation.

[52]  T. Timmusk,et al.  Regulation of different human NFAT isoforms by neuronal activity , 2016, Journal of neurochemistry.

[53]  Seth G. N. Grant,et al.  Identification of Vulnerable Cell Types in Major Brain Disorders Using Single Cell Transcriptomes and Expression Weighted Cell Type Enrichment , 2016, Front. Neurosci..

[54]  S. Mead,et al.  Review: An update on clinical, genetic and pathological aspects of frontotemporal lobar degenerations , 2015, Neuropathology and applied neurobiology.

[55]  M. Ehlers,et al.  Organization of TNIK in dendritic spines , 2015, The Journal of comparative neurology.

[56]  J. Sweatt,et al.  DNA methylation regulates neuronal glutamatergic synaptic scaling , 2015, Science Signaling.

[57]  Murray Grossman,et al.  Genome-wide association study of corticobasal degeneration identifies risk variants shared with progressive supranuclear palsy , 2015, Nature Communications.

[58]  N. Mosammaparast,et al.  Noncanonical regulation of alkylation damage resistance by the OTUD4 deubiquitinase , 2015, The EMBO journal.

[59]  Gang Yu,et al.  The function of RNA-binding proteins at the synapse: implications for neurodegeneration , 2015, Cellular and Molecular Life Sciences.

[60]  F. Lamari,et al.  HS3ST2 expression is critical for the abnormal phosphorylation of tau in Alzheimer's disease-related tau pathology. , 2015, Brain : a journal of neurology.

[61]  M. Grossman,et al.  C9orf72 promoter hypermethylation is neuroprotective , 2015, Neurology.

[62]  S. Linnarsson,et al.  Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq , 2015, Science.

[63]  S. Sorbi,et al.  The C9orf72 repeat expansion itself is methylated in ALS and FTLD patients , 2015, Acta Neuropathologica.

[64]  Matthew E. Ritchie,et al.  limma powers differential expression analyses for RNA-sequencing and microarray studies , 2015, Nucleic acids research.

[65]  Alexander Gerhard,et al.  Frontotemporal dementia and its subtypes: a genome-wide association study , 2014, The Lancet Neurology.

[66]  Rafael A. Irizarry,et al.  Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays , 2014, Bioinform..

[67]  N. Danbolt,et al.  Glutamate as a neurotransmitter in the healthy brain , 2014, Journal of Neural Transmission.

[68]  P. R. Elliott,et al.  OTU Deubiquitinases Reveal Mechanisms of Linkage Specificity and Enable Ubiquitin Chain Restriction Analysis , 2013, Cell.

[69]  Nathan D. VanderKraats,et al.  Discovering high-resolution patterns of differential DNA methylation that correlate with gene expression changes , 2013, Nucleic acids research.

[70]  Ibrahim Osman Adam,et al.  Ataxia, dementia, and hypogonadotropism caused by disordered ubiquitination. , 2013, The New England journal of medicine.

[71]  C. Plass,et al.  Promoter DNA methylation regulates progranulin expression and is altered in FTLD , 2013, Acta neuropathologica communications.

[72]  M. Maeda,et al.  Human prefoldin inhibits amyloid-β (Aβ) fibrillation and contributes to formation of nontoxic Aβ aggregates. , 2013, Biochemistry.

[73]  A. Aulas,et al.  Endogenous TDP-43, but not FUS, contributes to stress granule assembly via G3BP , 2012, Molecular Neurodegeneration.

[74]  L. Saksida,et al.  TNiK Is Required for Postsynaptic and Nuclear Signaling Pathways and Cognitive Function , 2012, The Journal of Neuroscience.

[75]  C. Gross,et al.  Dephosphorylation-Induced Ubiquitination and Degradation of FMRP in Dendrites: A Role in Immediate Early mGluR-Stimulated Translation , 2012, The Journal of Neuroscience.

[76]  A. Hayashi‐Takagi,et al.  The psychiatric disease risk factors DISC1 and TNIK interact to regulate synapse composition and function , 2011, Molecular Psychiatry.

[77]  R. Murray,et al.  Disease-associated epigenetic changes in monozygotic twins discordant for schizophrenia and bipolar disorder , 2011, Human molecular genetics.

[78]  Nick C Fox,et al.  A comparative clinical, pathological, biochemical and genetic study of fused in sarcoma proteinopathies. , 2011, Brain : a journal of neurology.

[79]  M. Kabani,et al.  Hsc70 Protein Interaction with Soluble and Fibrillar α-Synuclein* , 2011, The Journal of Biological Chemistry.

[80]  J. Bell,et al.  A Genome-Wide Study of DNA Methylation Patterns and Gene Expression Levels in Multiple Human and Chimpanzee Tissues , 2011, PLoS genetics.

[81]  Rui Luo,et al.  Is My Network Module Preserved and Reproducible? , 2011, PLoS Comput. Biol..

[82]  Xiao Zhang,et al.  Comparison of Beta-value and M-value methods for quantifying methylation levels by microarray analysis , 2010, BMC Bioinformatics.

[83]  R. Huganir,et al.  MINK and TNIK Differentially Act on Rap2-Mediated Signal Transduction to Regulate Neuronal Structure and AMPA Receptor Function , 2010, The Journal of Neuroscience.

[84]  R. Parker,et al.  Eukaryotic stress granules: the ins and outs of translation. , 2009, Molecular cell.

[85]  S. Horvath,et al.  WGCNA: an R package for weighted correlation network analysis , 2008, BMC Bioinformatics.

[86]  J. Trojanowski,et al.  Interactions between Hsp70 and the hydrophobic core of alpha-synuclein inhibit fibril assembly. , 2008, Biochemistry.

[87]  J. Schneider,et al.  Neuropathologic diagnostic and nosologic criteria for frontotemporal lobar degeneration: consensus of the Consortium for Frontotemporal Lobar Degeneration , 2007, Acta Neuropathologica.

[88]  A. Lees,et al.  Pathological tau burden and distribution distinguishes progressive supranuclear palsy-parkinsonism from Richardson's syndrome. , 2007, Brain : a journal of neurology.

[89]  Allan R. Jones,et al.  Genome-wide atlas of gene expression in the adult mouse brain , 2007, Nature.

[90]  Hui Zhou,et al.  Heat shock protein 70 inhibits alpha-synuclein fibril formation via interactions with diverse intermediates. , 2006, Journal of molecular biology.

[91]  Bruce L. Miller,et al.  Ubiquitinated TDP-43 in Frontotemporal Lobar Degeneration and Amyotrophic Lateral Sclerosis , 2006, Science.

[92]  Richard Paylor,et al.  Dynamic Translational and Proteasomal Regulation of Fragile X Mental Retardation Protein Controls mGluR-Dependent Long-Term Depression , 2006, Neuron.

[93]  J. Neuhaus,et al.  Comparison of family histories in FTLD subtypes and related tauopathies , 2005, Neurology.

[94]  Xingyao Wu,et al.  GDAP1, the protein causing Charcot-Marie-Tooth disease type 4A, is expressed in neurons and is associated with mitochondria. , 2005, Human molecular genetics.

[95]  J. Kril,et al.  Severity of gliosis in Pick's disease and frontotemporal lobar degeneration: tau-positive glia differentiate these disorders. , 2003, Brain : a journal of neurology.

[96]  Kenneth S Kosik,et al.  Neuronal RNA Granules A Link between RNA Localization and Stimulation-Dependent Translation , 2001, Neuron.

[97]  I. Ferrer Neurons and Their Dendrites in Frontotemporal Dementia , 1999, Dementia and Geriatric Cognitive Disorders.

[98]  T. Bliss,et al.  A synaptic model of memory: long-term potentiation in the hippocampus , 1993, Nature.

[99]  D. Linzer,et al.  A cloned human CCAAT-box-binding factor stimulates transcription from the human hsp70 promoter , 1990, Molecular and cellular biology.

[100]  L. Voronin,et al.  Long-term potentiation in the hippocampus , 1983, Neuroscience.

[101]  H. Abdul,et al.  NFATs and Alzheimer's Disease. , 2010, Molecular and cellular pharmacology.

[102]  Andrew E. Jaffe,et al.  Bioinformatics Applications Note Gene Expression the Sva Package for Removing Batch Effects and Other Unwanted Variation in High-throughput Experiments , 2022 .