Stochastic finite elements: Computational approaches to stochastic partial differential equations

Uncertainty estimation arises at least implicitly in any kind of modelling of the real world, and it is desirable to actually quantify the uncertainty in probabilistic terms. Here the emphasis is on uncertain systems, where the randomness is assumed spatial. Traditional computational approaches usually use some form of perturbation or Monte Carlo simulation. This is contrasted here with more recent methods based on stochastic Galerkin approximations. Also some approaches to an adaptive uncertainty quantification are pointed out. \abstract{Uncertainty estimation arises at least implicitly in any kind of modelling of the real world, and it is desirable to actually quantify the uncertainty in probabilistic terms. Here the emphasis is on uncertain systems, where the randomness is assumed spatial. Traditional computational approaches usually use some form of perturbation or Monte Carlo simulation. This is contrasted here with more recent methods based on stochastic Galerkin approximations. Also some approaches to an adaptive uncertainty quantification are pointed out.}

[1]  N. Wiener The Homogeneous Chaos , 1938 .

[2]  M. Rosenblatt Remarks on a Multivariate Transformation , 1952 .

[3]  Athanasios Papoulis,et al.  Probability, Random Variables and Stochastic Processes , 1965 .

[4]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[5]  H. Saunders,et al.  Book Reviews : DYNAMICS OF STRUCTURES R.W. Clough & J. Penzien McGraw-Hill Book Co., New York, New York (1975) , 1976 .

[6]  G. Strang,et al.  The solution of nonlinear finite element equations , 1979 .

[7]  R. Adler,et al.  The Geometry of Random Fields , 1982 .

[8]  Erik H. Vanmarcke,et al.  Random Fields: Analysis and Synthesis. , 1985 .

[9]  Kiyosi Itô Foundations of Stochastic Differential Equations in Infinite Dimensional Spaces , 1984 .

[10]  Gilbert Strang,et al.  Introduction to applied mathematics , 1988 .

[11]  A. Kiureghian,et al.  Multivariate distribution models with prescribed marginals and covariances , 1986 .

[12]  Robert E. Melchers,et al.  Structural Reliability: Analysis and Prediction , 1987 .

[13]  M. Deaton,et al.  Response Surfaces: Designs and Analyses , 1989 .

[14]  Markov Random Fields and Boundary Problems for Stochastic Partial Differential Equations , 1988 .

[15]  Jacques-Louis Lions,et al.  Mathematical Analysis and Numerical Methods for Science and Technology: Volume 3 Spectral Theory and Applications , 1990 .

[16]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[17]  T. E. Unny,et al.  Random evolution equations in hydrology , 1990 .

[18]  I. Elishakoff,et al.  Convex models of uncertainty in applied mechanics , 1990 .

[19]  Karl K. Sabelfeld Monte Carlo Methods , 1991 .

[20]  Karl Karlovich Sabelʹfelʹd Monte Carlo methods in boundary value problems , 1991 .

[21]  George Christakos,et al.  The Spatial Random Field Model , 1992 .

[22]  Michał Kleiber,et al.  The Stochastic Finite Element Method: Basic Perturbation Technique and Computer Implementation , 1993 .

[23]  F. Benth,et al.  Convergence Rates for Finite Element Approximations of Stochastic Partial Differential Equations , 1998 .

[24]  Manolis Papadrakakis,et al.  Robust and efficient methods for stochastic finite element analysis using Monte Carlo simulation , 1996 .

[25]  Roger Ghanem,et al.  Numerical solution of spectral stochastic finite element systems , 1996 .

[26]  S. Janson Gaussian Hilbert Spaces , 1997 .

[27]  K. Atkinson The Numerical Solution of Integral Equations of the Second Kind , 1997 .

[28]  K. Ritter,et al.  The Curse of Dimension and a Universal Method For Numerical Integration , 1997 .

[29]  H. Matthies,et al.  Uncertainties in probabilistic numerical analysis of structures and solids-Stochastic finite elements , 1997 .

[30]  G. Schuëller A state-of-the-art report on computational stochastic mechanics , 1997 .

[31]  P. Souganidis,et al.  Fully nonlinear stochastic partial differential equations , 1998 .

[32]  R. Caflisch Monte Carlo and quasi-Monte Carlo methods , 1998, Acta Numerica.

[33]  Gjermund Våge,et al.  Variational methods for PDEs aplied to stochastic partial differential equations , 1998 .

[34]  K. Ritter,et al.  Simple Cubature Formulas with High Polynomial Exactness , 1999 .

[35]  H. Matthies,et al.  Finite elements for stochastic media problems , 1999 .

[36]  Isaac Elishakoff,et al.  Whys and Hows in Uncertainty Modelling , 1999 .

[37]  Roger Ghanem,et al.  Ingredients for a general purpose stochastic finite elements implementation , 1999 .

[38]  Wei-Liem Loh,et al.  Estimating structured correlation matrices in smooth Gaussian random field models , 2000 .

[39]  R. Ghanem,et al.  Iterative solution of systems of linear equations arising in the context of stochastic finite elements , 2000 .

[40]  Achintya Haldar,et al.  Reliability Assessment Using Stochastic Finite Element Analysis , 2000 .

[41]  Rolf Rannacher,et al.  An optimal control approach to a posteriori error estimation in finite element methods , 2001, Acta Numerica.

[42]  I. Babuska,et al.  Solution of stochastic partial differential equations using Galerkin finite element techniques , 2001 .

[43]  Hermann G. Matthies,et al.  Multilevel solvers for the analysis of stochastic systems , 2001 .

[44]  Ivo Babuška,et al.  On solving elliptic stochastic partial differential equations , 2002 .

[45]  Roger Ghanem,et al.  Adaptive data refinement in the spectral stochastic finite element method , 2002 .

[46]  D. Xiu,et al.  Stochastic Modeling of Flow-Structure Interactions Using Generalized Polynomial Chaos , 2002 .

[47]  D. Xiu,et al.  Modeling Uncertainty in Steady State Diffusion Problems via Generalized Polynomial Chaos , 2002 .

[48]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[49]  Hermann G. Matthies,et al.  Fast Solvers for the White Noise Analysis of Stochastic Systems , 2002 .

[50]  M. Grigoriu Stochastic Calculus: Applications in Science and Engineering , 2002 .

[51]  Roger Ghanem,et al.  Simulation of multi-dimensional non-gaussian non-stationary random fields , 2002 .

[52]  George E. Karniadakis,et al.  Spectral Polynomial Chaos Solutions of the Stochastic Advection Equation , 2002, J. Sci. Comput..

[53]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[54]  R. Ghanem,et al.  Stochastic Finite-Element Analysis of Seismic Soil-Structure Interaction , 2002 .

[55]  S. Torquato Random Heterogeneous Materials , 2002 .

[56]  D. Xiu,et al.  Modeling uncertainty in flow simulations via generalized polynomial chaos , 2003 .

[57]  Hierarchical parallel solution of stochastic systems , 2003 .

[58]  Christoph Schwab,et al.  Sparse Finite Elements for Stochastic Elliptic Problems – Higher Order Moments , 2003, Computing.

[59]  E. Jaynes Probability theory : the logic of science , 2003 .

[60]  Knut Petras,et al.  Fast calculation of coefficients in the Smolyak algorithm , 2001, Numerical Algorithms.

[61]  R. Ghanem,et al.  Multi-resolution analysis of wiener-type uncertainty propagation schemes , 2004 .

[62]  Raúl Tempone,et al.  Galerkin Finite Element Approximations of Stochastic Elliptic Partial Differential Equations , 2004, SIAM J. Numer. Anal..

[63]  R. Ghanem,et al.  Uncertainty propagation using Wiener-Haar expansions , 2004 .

[64]  A. Berlinet,et al.  Reproducing kernel Hilbert spaces in probability and statistics , 2004 .

[65]  Steen Krenk,et al.  Stochastic Finite Element Methods , 2004 .

[66]  Thomas Gerstner,et al.  Numerical integration using sparse grids , 2004, Numerical Algorithms.

[67]  Dongbin Xiu,et al.  High-Order Collocation Methods for Differential Equations with Random Inputs , 2005, SIAM J. Sci. Comput..

[68]  Yusheng Feng,et al.  Theory and methodology for estimation and control of errors due to modeling, approximation, and uncertainty , 2005 .

[69]  Hermann G. Matthies,et al.  Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations , 2005 .

[70]  Baver Okutmustur Reproducing kernel Hilbert spaces , 2005 .

[71]  H. Matthies,et al.  Hierarchical parallelisation for the solution of stochastic finite element equations , 2005 .

[72]  G. Karniadakis,et al.  An adaptive multi-element generalized polynomial chaos method for stochastic differential equations , 2005 .

[73]  P. Frauenfelder,et al.  Finite elements for elliptic problems with stochastic coefficients , 2005 .

[74]  I. Babuska,et al.  Solving elliptic boundary value problems with uncertain coefficients by the finite element method: the stochastic formulation , 2005 .

[75]  Christian Soize Non-Gaussian positive-definite matrix-valued random fields for elliptic stochastic partial differential operators , 2006 .

[76]  Thomas Y. Hou,et al.  Wiener Chaos expansions and numerical solutions of randomly forced equations of fluid mechanics , 2006, J. Comput. Phys..

[77]  Yanzhao Cao,et al.  On Convergence rate of Wiener-Ito expansion for generalized random variables , 2006 .

[78]  O. L. Maître,et al.  Uncertainty propagation in CFD using polynomial chaos decomposition , 2006 .

[79]  Nicholas Zabaras,et al.  A concurrent model reduction approach on spatial and random domains for the solution of stochastic PDEs , 2006 .

[80]  N. Zabaras,et al.  Uncertainty propagation in finite deformations––A spectral stochastic Lagrangian approach , 2006 .

[81]  Christian Soize,et al.  Maximum likelihood estimation of stochastic chaos representations from experimental data , 2006 .

[82]  Julien Baroth,et al.  SFE method using Hermite polynomials: An approach for solving nonlinear mechanical problems with uncertain parameters , 2006 .

[83]  Marcus Sarkis,et al.  Stochastic Galerkin Method for Elliptic Spdes: A White Noise Approach , 2006 .

[84]  Roger Ghanem,et al.  Efficient characterization of the random eigenvalue problem in a polynomial chaos decomposition , 2007 .

[85]  Roger Ghanem,et al.  Stochastic model reduction for chaos representations , 2007 .

[86]  Cédric Chauvière,et al.  An efficient SFE method using Lagrange polynomials: Application to nonlinear mechanical problems with uncertain parameters , 2007 .

[87]  X. Frank Xu,et al.  A multiscale stochastic finite element method on elliptic problems involving uncertainties , 2007 .

[88]  Fabio Nobile,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007, SIAM Rev..

[89]  Nicholas Zabaras,et al.  A non-intrusive stochastic Galerkin approach for modeling uncertainty propagation in deformation processes , 2007 .

[90]  Raul Tempone,et al.  The analysis of a sparse grid stochastic collocation method for partial differential equations with high-dimensional random input data. , 2007 .

[91]  Jean-Baptiste Colliat,et al.  Stochastic approach to size effect in quasi-brittle materials , 2007 .

[92]  Hermann G. Matthies,et al.  Uncertainty Quantification with Stochastic Finite Elements , 2007 .

[93]  Bruno Sudret,et al.  Sparse polynomial chaos expansions and adaptive stochastic finite elements using a regression approach , 2008 .

[94]  Roger Ghanem,et al.  Stochastic convergence acceleration through basis enrichment of polynomial chaos expansions , 2008 .

[95]  J. Zabczyk,et al.  Stochastic Equations in Infinite Dimensions , 2008 .