MORPHIC: programmable photonic circuits enabled by silicon photonic MEMS

In the European project MORPHIC we develop a platform for programmable silicon photonic circuits enabled by waveguide-integrated micro-electro-mechanical systems (MEMS). MEMS can add compact, and low-power phase shifters and couplers to an established silicon photonics platform with high-speed modulators and detectors. This MEMS technology is used for a new class of programmable photonic circuits, that can be reconfigured using electronics and software, consisting of large interconnected meshes of phase shifters and couplers. MORPHIC is also developing the packaging and driver electronics interfacing schemes for such large circuits, creating a supply chain for rapid prototyping new photonic chip concepts. These will be demonstrated in different applications, such as switching, beamforming and microwave photonics.

[1]  Reck,et al.  Experimental realization of any discrete unitary operator. , 1994, Physical review letters.

[2]  D. Uttamchandani,et al.  MEMS variable optical attenuator with vernier latching mechanism , 2006, IEEE Photonics Technology Letters.

[3]  羽根 一博,et al.  Submicron silicon waveguide optical switch driven by microelectromechanical actuator , 2008 .

[4]  David J. Thomson,et al.  Silicon optical modulators , 2010 .

[5]  D. Van Thourhout,et al.  CMOS-compatible Tungsten heaters for silicon photonic waveguides , 2012, The 9th International Conference on Group IV Photonics (GFP).

[6]  D. Van Thourhout,et al.  Ultracompact Phase Modulator Based on a Cascade of NEMS-Operated Slot Waveguides Fabricated in Silicon-on-Insulator , 2012, IEEE Photonics Journal.

[7]  David Hillerkuss,et al.  Performance tradeoff between lateral and interdigitated doping patterns for high speed carrier-depletion based silicon modulators. , 2012, Optics express.

[8]  A microelectromechanically tunable microring resonator composed of freestanding silicon photonic waveguide couplers , 2013 .

[9]  D. Miller,et al.  Self-aligning universal beam coupler. , 2013, Optics express.

[10]  S. Abe,et al.  Variable-Gap Silicon Photonic Waveguide Coupler Switch With a Nanolatch Mechanism , 2013, IEEE Photonics Technology Letters.

[11]  Howard Rosenbaum,et al.  Effects of reading proficiency on embedded stem priming in primary school children , 2021 .

[12]  M. Carminati,et al.  Non-Invasive On-Chip Light Observation by Contactless Waveguide Conductivity Monitoring , 2014, IEEE Journal of Selected Topics in Quantum Electronics.

[13]  H. M. Chu,et al.  A Wide-Tuning Silicon Ring-Resonator Composed of Coupled Freestanding Waveguides , 2014, IEEE Photonics Technology Letters.

[14]  J. O'Brien,et al.  Universal linear optics , 2015, Science.

[15]  John E. Bowers,et al.  Integrated microwave photonics , 2015, 2015 International Topical Meeting on Microwave Photonics (MWP).

[16]  Ming C. Wu,et al.  Large-scale silicon photonic switches with movable directional couplers , 2015 .

[17]  Göran Stemme,et al.  Low-power microelectromechanically tunable silicon photonic ring resonator add-drop filter. , 2015, Optics letters.

[18]  Juerg Leuthold,et al.  Digitally Controlled Phase Shifter Using an SOI Slot Waveguide With Liquid Crystal Infiltration , 2015, IEEE Photonics Technology Letters.

[19]  Chris G. H. Roeloffzen,et al.  Programmable photonic signal processor chip for radiofrequency applications , 2015, 1505.00094.

[20]  Peter Ossieur,et al.  Optical and Electronic Packaging Processes for Silicon Photonic Systems , 2015, Journal of Lightwave Technology.

[21]  R. Soref,et al.  Reconfigurable lattice mesh designs for programmable photonic processors and universal couplers , 2016, 2016 18th International Conference on Transparent Optical Networks (ICTON).

[22]  Humphreys,et al.  An Optimal Design for Universal Multiport Interferometers , 2016, 1603.08788.

[23]  Im,et al.  Demonstration of a 4 × 4-port universal linear circuit , 2016 .

[24]  Gregory R. Steinbrecher,et al.  Large-scale quantum photonic circuits in silicon , 2016 .

[25]  Ivana Gasulla,et al.  Microwave photonics: The programmable processor , 2016 .

[26]  Ming C. Wu,et al.  Highly Scalable Digital Silicon Photonic MEMS Switches , 2016, Journal of Lightwave Technology.

[27]  P. Verheyen,et al.  Active Components for 50 Gb/s NRZ-OOK Optical Interconnects in a Silicon Photonics Platform , 2017, Journal of Lightwave Technology.

[28]  Ming C. Wu,et al.  Flip Chip Packaging of Digital Silicon Photonics MEMS Switch for Cloud Computing and Data Centre , 2017, IEEE Photonics Journal.

[29]  Dirk Englund,et al.  Deep learning with coherent nanophotonic circuits , 2017, 2017 Fifth Berkeley Symposium on Energy Efficient Electronic Systems & Steep Transistors Workshop (E3S).

[30]  Thomas Taubner,et al.  Phase-change materials for non-volatile photonic applications , 2017, Nature Photonics.

[31]  Xia Chen,et al.  The Emergence of Silicon Photonics as a Flexible Technology Platform , 2018, Proceedings of the IEEE.

[32]  G. Torfs,et al.  Real-Time 100 Gb/s NRZ and EDB Transmission With a GeSi Electroabsorption Modulator for Short-Reach Optical Interconnects , 2018, Journal of Lightwave Technology.

[33]  Christopher C. Tison,et al.  Linear programmable nanophotonic processors , 2018, Optica.

[34]  Juerg Leuthold,et al.  Large Pockels effect in micro- and nanostructured barium titanate integrated on silicon , 2018, Nature Materials.

[35]  Ivana Gasulla,et al.  Toward Programmable Microwave Photonics Processors , 2018, Journal of Lightwave Technology.

[36]  Ivana Gasulla,et al.  Field-programmable photonic arrays. , 2018, Optics express.

[37]  Lukas Chrostowski,et al.  Silicon Photonics Circuit Design: Methods, Tools and Challenges , 2018 .

[38]  Mk Meint Smit,et al.  Past, present, and future of InP-based photonic integration , 2019, APL Photonics.

[39]  Kristinn B. Gylfason,et al.  Low-Loss MEMS Phase Shifter for Large Scale Reconfigurable Silicon Photonics , 2019, 2019 IEEE 32nd International Conference on Micro Electro Mechanical Systems (MEMS).

[40]  Ming C. Wu,et al.  Wafer-scale silicon photonic switches beyond die size limit , 2019, Optica.

[41]  Niels Quack,et al.  Silicon Photonic Broadband Suspended Directional Coupler , 2019, 2019 International Conference on Optical MEMS and Nanophotonics (OMN).

[42]  Fabio Sciarrino,et al.  Integrated photonic quantum technologies , 2019, Nature Photonics.

[43]  Jose Capmany,et al.  Scalable analysis for arbitrary photonic integrated waveguide meshes , 2018, Optica.

[44]  Xin Yin,et al.  90-Gb/s NRZ Optical Receiver in Silicon Using a Fully Differential Transimpedance Amplifier , 2019, Journal of Lightwave Technology.

[45]  A. Fiore,et al.  InP MEMS Mach-Zehnder Interferometer Optical Switch on Silicon , 2019, 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC).

[46]  Xiangfeng Chen,et al.  ME2.2 - A Graph-based Design and Programming Strategy for Reconfigurable Photonic Circuits , 2019, 2019 IEEE Photonics Society Summer Topical Meeting Series (SUM).

[47]  S. J. Bleiker,et al.  Wafer-Level Vacuum Sealing by Transfer Bonding of Silicon Caps for Small Footprint and Ultra-Thin MEMS Packages , 2019, Journal of Microelectromechanical Systems.

[48]  Iman Zand,et al.  MP6 - Discretization Effects of Digital Control of Thermally Tunable 2×2 MZI Couplers , 2019, 2019 IEEE Photonics Society Summer Topical Meeting Series (SUM).

[49]  José Capmany,et al.  Auto-routing algorithm for field-programmable photonic gate arrays. , 2020, Optics express.

[50]  Kristinn B. Gylfason,et al.  MEMS for Photonic Integrated Circuits , 2020, IEEE Journal of Selected Topics in Quantum Electronics.

[51]  Kristinn B. Gylfason,et al.  MEMS-Enabled Silicon Photonic Integrated Devices and Circuits , 2020, IEEE Journal of Quantum Electronics.