Si(111)-In Nanowire Optical Response from Large-scale Ab Initio Calculations

The anisotropic optical response of Si(111)-(4×1)/(8×2)-In in the mid-infrared, where significant changes in the band structure between competing models of this important quasi-1D system are expected, has been calculated from first principles. Two characteristic peaks are calculated for the hexagon model of the (8×2) structure, but not for the trimer model. The comparison with recent infrared reflection anisotropy spectroscopy (RAS) data—showing the replacement of the anisotropic Drude tail of the (4×1) phase by two peaks at 0.50 eV and 0.72 eV—gives strong evidence for the hexagon model. Our calculations thus settle decades of intense debate about the ground-state geometry of this important prototype for quasi one-dimensional electronic systems.

[1]  D. Park,et al.  Direct evidence of the charge ordered phase transition of indium nanowires on Si111. , 2004, Physical review letters.

[2]  F. Bechstedt,et al.  Bulk excitonic effects in surface optical spectra. , 2001, Physical review letters.

[3]  Friedhelm Bechstedt,et al.  Calculation of surface optical properties: from qualitative understanding to quantitative predictions , 2004 .

[4]  W. Richter,et al.  Surface phonons of the Si(111):In-(4×1) and (8×2) phases , 2007 .

[5]  R. Feidenhans'l,et al.  Structure determination of the indium-induced Si ( 111 ) − ( 4 × 1 ) reconstruction by surface x-ray diffraction , 1999, cond-mat/9909286.

[6]  Ayahiko Ichimiya,et al.  Surface structure of Si(1 1 1)-(8 × 2) In determined by reflection high-energy positron diffraction , 2008 .

[7]  Iwao Matsuda,et al.  Surface-State Electrical Conductivity at a Metal-Insulator Transition On Silicon , 2004 .

[8]  F. Flores,et al.  Soft phonon, dynamical fluctuations, and a reversible phase transition: indium chains on silicon. , 2006, Physical review letters.

[9]  Elliott H. Lieb,et al.  Absence of Mott Transition in an Exact Solution of the Short-Range, One-Band Model in One Dimension , 1968 .

[10]  Wolfgang Richter,et al.  Optical in situ surface control during MOVPE and MBE growth , 1993, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[11]  A. Selloni,et al.  Anisotropy of surface optical properties from first-principles calculations. , 1990, Physical review. B, Condensed matter.

[12]  David E. Aspnes,et al.  Differential reflection spectroscopy of very thin surface films , 1971 .

[13]  Wakio Uchida,et al.  Angle-resolved high-resolution electron-energy-loss study of In-adsorbed Si(111)-(4×1) and -(8×2) surfaces , 2000 .

[14]  Kanta Ono,et al.  Nature of the broken-symmetry phase of the one-dimensional metallic In/Si(111) surface , 2002 .

[15]  Wenbin Lu,et al.  Atomic indium nanowires on Si(1 1 1): the (4 × 1)–(8 × 2) phase transition studied with reflectance anisotropy spectroscopy , 2004 .

[16]  R. D. Sole,et al.  Macroscopic dielectric tensor at crystal surfaces , 1984 .

[17]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[18]  N Koch,et al.  Adatom-induced conductance modification of in nanowires: potential-well scattering and structural effects. , 2008, Physical review letters.

[19]  R. del Sole,et al.  Microscopic theory of optical properties of crystal surfaces , 1981 .

[20]  Toyohiko Kinoshita,et al.  Surface electronic structure of a single-domain Si(111)4 × 1-In surface: a synchrotron radiation photoemission study , 1995 .

[21]  Peter Weightman,et al.  Reflection anisotropy spectroscopy , 2005 .

[22]  E. Rotenberg,et al.  Mechanism of gap opening in a triple-band Peierls system: in atomic wires on Si. , 2004, Physical review letters.

[23]  W. Richter,et al.  Phonon and polarized reflectance spectra fromSi(111)−(4×1)In: Evidence for a charge-density-wave driven phase transition , 2003 .

[24]  Friedhelm Bechstedt,et al.  Reconstruction of quasi-one-dimensional In ∕ Si ( 111 ) systems: Charge- and spin-density waves versus bonding , 2006 .

[25]  Wenchang Lu,et al.  Nanowire-induced optical anisotropy of the Si(111)-In surface , 2003 .

[26]  Tadaaki Nagao,et al.  INSTABILITY AND CHARGE DENSITY WAVE OF METALLIC QUANTUM CHAINS ON A SILICON SURFACE , 1999 .

[27]  F. Bechstedt,et al.  Structure of si(111)-in nanowires determined from the midinfrared optical response. , 2009, Physical review letters.

[28]  Wolf Gero Schmidt,et al.  Optical anisotropy of the In/Si(1 1 1)(4 × 1)/(8 × 2) nanowire array , 2009 .

[29]  A. Rajagopal,et al.  Perturbative approach to the calculation of the electric field near a metal surface , 1979 .

[30]  Frank Fuchs,et al.  Oxidation- and organic-molecule-induced changes of the Si surface optical anisotropy: ab initio predictions , 2004 .

[31]  Takashi Uchihashi,et al.  Electron conduction through quasi-one-dimensional indium wires on silicon , 2002 .

[32]  Katsuaki Sugawara,et al.  Cooperative structural and Peierls transition of indium chains on Si(111) , 2008 .

[33]  Geunseop Lee,et al.  Intertwined electronic and structural phase transitions in the In/Si(111) interface. , 2005, Physical review letters.

[34]  Friedhelm Bechstedt,et al.  Understanding reflectance anisotropy: Surface-state signatures and bulk-related features , 2000 .

[35]  F. Bechstedt,et al.  Hexagon versus trimer formation in in nanowires on Si(111): energetics and quantum conductance. , 2007, Physical review letters.

[36]  Jun-Hyung Cho,et al.  First-principles calculation of the atomic structure of one-dimensional indium chains on Si(111): Convergence to a metastable structure , 2007 .

[37]  Iwao Matsuda,et al.  Anisotropy in conductance of a quasi-one-dimensional metallic surface state measured by a square micro-four-point probe method. , 2003, Physical review letters.

[38]  Ian G. Hill,et al.  Strongly Anisotropic Band Dispersion of an Image State Located above Metallic Nanowires , 1999 .

[39]  F. J. Himpsel,et al.  One-dimensional electronic states at surfaces , 2001 .

[40]  David E. Aspnes,et al.  Real-time optical analysis and control of semiconductor epitaxy: Progress and opportunity , 1997 .