Emerging methods for multiscale simulation of biomolecular systems

Three multiscale computational methodologies for biomolecular systems are described: the force-matching method for developing coarse-grained models directly from atomistic simulations; the quasi-particle approach of simulating field theory representations at the mesoscopic scale; and the multiscale-coupling method for direct information transfer between mesoscopic and atomistic scales on the fly. The statistical mechanical background for each of the methods is described in a comprehensive manner in order to highlight their theoretical foundations. Examples of various applications of these methods to model different biophysical processes are given. Combining with atomistic-level MD simulations, these three methods compose a powerful tool for bridging and spanning the multiple spatial and temporal domains that are present in many biological assemblies. Future directions of the methodology developments are also discussed.

[1]  Reinhard Lipowsky,et al.  Structure and dynamics of membranes , 1995 .

[2]  E. Sackmann,et al.  Imaging optical thicknesses and separation distances of phospholipid vesicles at solid surfaces , 1993 .

[3]  Gregory A Voth,et al.  Coarse-grained modeling of the actin filament derived from atomistic-scale simulations. , 2006, Biophysical journal.

[4]  Reinhard Lipowsky,et al.  Computer simulations of bilayer membranes - self-assembly and interfacial tension. , 1998 .

[5]  Gary P. Morriss,et al.  Statistical Mechanics of Nonequilibrium Liquids , 2008 .

[6]  Gregory A. Voth,et al.  Simulation of Biomolecular Systems at Multiple Length and Time Scales , 2004 .

[7]  G. Voth,et al.  Calculating the bulk modulus for a lipid bilayer with nonequilibrium molecular dynamics simulation. , 2002, Biophysical journal.

[8]  Gregory A Voth,et al.  Interfacing molecular dynamics and macro-scale simulations for lipid bilayer vesicles. , 2002, Biophysical journal.

[9]  Gregory A Voth,et al.  Allostery of actin filaments: molecular dynamics simulations and coarse-grained analysis. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Gregory A Voth,et al.  Coupling field theory with continuum mechanics: a simulation of domain formation in giant unilamellar vesicles. , 2005, Biophysical journal.

[11]  Sergei Izvekov,et al.  Multiscale Coarse-Graining of Mixed Phospholipid/Cholesterol Bilayers. , 2006, Journal of chemical theory and computation.

[12]  Michael L. Klein,et al.  Coarse grain models and the computer simulation of soft materials , 2004 .

[13]  Gregory A Voth,et al.  Bridging microscopic and mesoscopic simulations of lipid bilayers. , 2002, Biophysical journal.

[14]  James M. Hyman Patch dynamics for multiscale problems , 2005, Computing in Science & Engineering.

[15]  A. Violi,et al.  A Coarse-Grained Molecular Dynamics Study of Carbon Nanoparticle Aggregation. , 2006, Journal of chemical theory and computation.

[16]  S. Boxer,et al.  Micropatterning Fluid Lipid Bilayers on Solid Supports , 1997, Science.

[17]  Taniguchi,et al.  Shape deformation and phase separation dynamics of two-component vesicles. , 1996, Physical review letters.

[18]  Valentina Tozzini,et al.  Coarse-grained models for proteins. , 2005, Current opinion in structural biology.

[19]  P. Coveney,et al.  Continuum-particle hybrid coupling for mass, momentum, and energy transfers in unsteady fluid flow. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  H. Posch,et al.  Viscous conducting flows with smooth-particle applied mechanics. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[21]  Udo Seifert,et al.  Configurations of fluid membranes and vesicles , 1997 .

[22]  L. Lucy A numerical approach to the testing of the fission hypothesis. , 1977 .

[23]  Gregory A Voth,et al.  Coupling field theory with mesoscopic dynamical simulations of multicomponent lipid bilayers. , 2004, Biophysical journal.

[24]  A. Mark,et al.  Molecular dynamics simulation of the formation, structure, and dynamics of small phospholipid vesicles. , 2003, Journal of the American Chemical Society.

[25]  Gregory A Voth,et al.  Mesoscopic lateral diffusion in lipid bilayers. , 2004, Biophysical journal.

[26]  G. Voth,et al.  A new perspective on the coarse-grained dynamics of fluids. , 2004, The Journal of chemical physics.

[27]  A. Mark,et al.  Coarse grained model for semiquantitative lipid simulations , 2004 .

[28]  Gregory A Voth,et al.  A second generation mesoscopic lipid bilayer model: connections to field-theory descriptions of membranes and nonlocal hydrodynamics. , 2006, The Journal of chemical physics.

[29]  Gregory A Voth,et al.  A multiscale coarse-graining method for biomolecular systems. , 2005, The journal of physical chemistry. B.

[30]  W. Helfrich Elastic Properties of Lipid Bilayers: Theory and Possible Experiments , 1973, Zeitschrift fur Naturforschung. Teil C: Biochemie, Biophysik, Biologie, Virologie.

[31]  Michael L. Klein,et al.  Simulations of Phospholipids Using a Coarse Grain Model , 2001 .

[32]  Gregory A Voth,et al.  Probing the molecular-scale lipid bilayer response to shear flow using nonequilibrium molecular dynamics. , 2005, The journal of physical chemistry. B.

[33]  W. H. Jeu,et al.  Structure and fluctuations of smectic membranes , 2003 .

[34]  Gregory A Voth,et al.  Effective force fields for condensed phase systems from ab initio molecular dynamics simulation: a new method for force-matching. , 2004, The Journal of chemical physics.

[35]  Saxena,et al.  Phase separation and shape deformation of two-phase membranes , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[36]  Gregory A Voth,et al.  Systematic coarse-graining of nanoparticle interactions in molecular dynamics simulation. , 2005, The journal of physical chemistry. B.

[37]  Peter G Wolynes,et al.  Protein Structure Prediction:  The Next Generation. , 2006, Journal of chemical theory and computation.

[38]  Wilfred F van Gunsteren,et al.  Multigraining: an algorithm for simultaneous fine-grained and coarse-grained simulation of molecular systems. , 2006, The Journal of chemical physics.

[39]  E. Sackmann,et al.  Membrane bending energy concept of vesicle‐ and cell‐shapes and shape‐transitions , 1994, FEBS letters.

[40]  Stewart A. Adcock,et al.  Molecular dynamics: survey of methods for simulating the activity of proteins. , 2006, Chemical reviews.

[41]  Gregory A Voth,et al.  Multiscale coarse-graining of ionic liquids. , 2006, The journal of physical chemistry. B.

[42]  M. Karplus,et al.  Molecular dynamics simulations in biology , 1990, Nature.

[43]  G. Voth,et al.  A computational study of the closed and open states of the influenza a M2 proton channel. , 2005, Biophysical journal.

[44]  M. Karplus,et al.  Molecular dynamics and protein function. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[45]  Rony Granek,et al.  From Semi-Flexible Polymers to Membranes: Anomalous Diffusion and Reptation , 1997 .

[46]  F. Brochard,et al.  Frequency spectrum of the flicker phenomenon in erythrocytes , 1975 .

[47]  S. Boxer,et al.  Micropattern formation in supported lipid membranes. , 2002, Accounts of chemical research.

[48]  A. Mark,et al.  Simulation of the spontaneous aggregation of phospholipids into bilayers. , 2001, Journal of the American Chemical Society.

[49]  C. G. Hoover,et al.  Links between microscopic and macroscopic fluid mechanics , 2003 .

[50]  J. Monaghan Smoothed particle hydrodynamics , 2005 .