Anatomy of Escherichia coli σ70 promoters

Information theory was used to build a promoter model that accounts for the −10, the −35 and the uncertainty of the gap between them on a common scale. Helical face assignment indicated that base −7, rather than −11, of the −10 may be flipping to initiate transcription. We found that the sequence conservation of σ70 binding sites is 6.5 ± 0.1 bits. Some promoters lack a −35 region, but have a 6.7 ± 0.2 bit extended −10, almost the same information as the bipartite promoter. These results and similarities between the contacts in the extended −10 binding and the −35 suggest that the flexible bipartite σ factor evolved from a simpler polymerase. Binding predicted by the bipartite model is enriched around 35 bases upstream of the translational start. This distance is the smallest 5′ mRNA leader necessary for ribosome binding, suggesting that selective pressure minimizes transcript length. The promoter model was combined with models of the transcription factors Fur and Lrp to locate new promoters, to quantify promoter strengths, and to predict activation and repression. Finally, the DNA-bending proteins Fis, H-NS and IHF frequently have sites within one DNA persistence length from the −35, so bending allows distal activators to reach the polymerase.

[1]  R. Burgess,et al.  Factor Stimulating Transcription by RNA Polymerase , 1969, Nature.

[2]  J. Schellman,et al.  Flexibility of DNA , 1974, Biopolymers.

[3]  N. Seeman,et al.  Sequence-specific Recognition of Double Helical Nucleic Acids by Proteins (base Pairs/hydrogen Bonding/recognition Fidelity/ion Binding) , 2022 .

[4]  J. Pierce An introduction to information theory: symbols, signals & noise , 1980 .

[5]  Walter Gilbert,et al.  E. coli RNA polymerase interacts homologously with two different promoters , 1980, Cell.

[6]  J D Gralla,et al.  Mutation-induced changes in RNA polymerase-lac ps promoter interactions. , 1982, The Journal of biological chemistry.

[7]  W Mandecki,et al.  A lac promoter with a changed distance between -10 and -35 regions. , 1982, Nucleic acids research.

[8]  M Ikehara,et al.  Essential structure of E. coli promoter: effect of spacer length between the two consensus sequences on promoter function. , 1983, Nucleic acids research.

[9]  R. F. Good,et al.  DNA sequence of the Escherichia coli tonB gene. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[10]  D. K. Hawley,et al.  Compilation and analysis of Escherichia coli promoter DNA sequences. , 1983, Nucleic acids research.

[11]  M. Schwartz,et al.  Positive control of transcription initiation in bacteria. , 1984, Annual review of genetics.

[12]  Robert Entriken,et al.  Escherichia coli promoter sequences predict in vitro RNA polymerase selectivity , 1984, Nucleic Acids Res..

[13]  W. McClure,et al.  Mechanism and control of transcription initiation in prokaryotes. , 1985, Annual review of biochemistry.

[14]  M. Waterman,et al.  Rigorous pattern-recognition methods for DNA sequences. Analysis of promoter sequences from Escherichia coli. , 1985, Journal of molecular biology.

[15]  T. D. Schneider,et al.  Information content of binding sites on nucleotide sequences. , 1986, Journal of molecular biology.

[16]  M. Rosenberg,et al.  Constitutive function of a positively regulated promoter reveals new sequences essential for activity. , 1987, The Journal of biological chemistry.

[17]  J. Gralla,et al.  All three elements of the lac ps promoter mediate its transcriptional response to DNA supercoiling. , 1987, Journal of molecular biology.

[18]  DNA functional groups required for formation of open complexes between Escherichia coli RNA polymerase and the lambda PR promoter. Identification via base analog substitutions. , 1987, The Journal of biological chemistry.

[19]  C. Harley,et al.  Analysis of E. coli promoter sequences. , 1987, Nucleic acids research.

[20]  M. Takanami,et al.  Supercoiling response of E. coli promoters with different spacer lengths. , 1988, Biochimica et biophysica acta.

[21]  M. Guéron,et al.  Characterization of base-pair opening in deoxynucleotide duplexes using catalyzed exchange of the imino proton. , 1988, Journal of Molecular Biology.

[22]  K. Struhl,et al.  Defining the consensus sequences of E.coli promoter elements by random selection. , 1988, Nucleic acids research.

[23]  T D Schneider,et al.  Excess information at bacteriophage T7 genomic promoters detected by a random cloning technique. , 1989, Nucleic acids research.

[24]  M. O'Neill,et al.  Consensus methods for finding and ranking DNA binding sites. Application to Escherichia coli promoters. , 1989, Journal of molecular biology.

[25]  A V Lukashin,et al.  Neural network models for promoter recognition. , 1989, Journal of biomolecular structure & dynamics.

[26]  L. Loeb,et al.  Structure-function relationships in Escherichia coli promoter DNA. , 1990, Progress in nucleic acid research and molecular biology.

[27]  F E Penotti,et al.  Human DNA TATA boxes and transcription initiation sites. A statistical study. , 1990, Journal of molecular biology.

[28]  Promoter recognition and mRNA initiation by Escherichia coli E sigma 70. , 1990, Methods in enzymology.

[29]  T. D. Schneider,et al.  Sequence logos: a new way to display consensus sequences. , 1990, Nucleic acids research.

[30]  J. Gralla [4] Promoter recognition and mRNA initiation by Escherichia coli Eσ70 , 1990 .

[31]  W. McClure,et al.  Searching for and predicting the activity of sites for DNA binding proteins: compilation and analysis of the binding sites for Escherichia coli integration host factor (IHF). , 1990, Nucleic acids research.

[32]  J. Collado-Vides,et al.  Control site location and transcriptional regulation in Escherichia coli. , 1991, Microbiological reviews.

[33]  C. Waldburger,et al.  Hierarchies of base pair preferences in the P22 ant promoter , 1991, Journal of bacteriology.

[34]  T. D. Schneider,et al.  Theory of molecular machines. II. Energy dissipation from molecular machines. , 1991, Journal of theoretical biology.

[35]  T. D. Schneider,et al.  Features of spliceosome evolution and function inferred from an analysis of the information at human splice sites. , 1992, Journal of molecular biology.

[36]  C. Ball,et al.  Dramatic changes in Fis levels upon nutrient upshift in Escherichia coli , 1992, Journal of bacteriology.

[37]  A. Kumar,et al.  The minus 35-recognition region of Escherichia coli sigma 70 is inessential for initiation of transcription at an "extended minus 10" promoter. , 1993, Journal of molecular biology.

[38]  D. Leach,et al.  A Short Course in Bacterial Genetics: A Laboratory Manual and Handbook for Escherichia coli and Related Bacteria . By Jeffrey H. Miller. Cold Spring Harbor Laboratory Press. 1992. 876 pages. Price $95.00. ISBN 0 87969 349 5. , 1993 .

[39]  T. D. Schneider,et al.  Information analysis of sequences that bind the replication initiator RepA. , 1993, Journal of molecular biology.

[40]  K Weller,et al.  Promoter strength prediction based on occurrence frequencies of consensus patterns. , 1994, Journal of theoretical biology.

[41]  K. Postle,et al.  Repression of tonB transcription during anaerobic growth requires Fur binding at the promoter and a second factor binding upstream , 1994, Molecular microbiology.

[42]  F. Heffron,et al.  Fur regulon of Salmonella typhimurium: identification of new iron-regulated genes , 1995, Journal of bacteriology.

[43]  G. Stormo,et al.  Escherichia coli promoter sequences: analysis and prediction. , 1996, Methods in enzymology.

[44]  T. D. Schneider,et al.  Reading of DNA sequence logos: prediction of major groove binding by information theory. , 1996, Methods in enzymology.

[45]  M. Freundlich,et al.  Lrp is a direct repressor of the dad operon in Escherichia coli , 1996, Journal of bacteriology.

[46]  C. Gross,et al.  The sigma subunit of Escherichia coli RNA polymerase senses promoter spacing. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[47]  Jeffrey W. Roberts,et al.  Base-Specific Recognition of the Nontemplate Strand of Promoter DNA by E. coli RNA Polymerase , 1996, Cell.

[48]  Thomas D. Schneider,et al.  Fast Multiple Alignment of Ungapped DNA Sequences Using Information Theory and a Relaxation Method , 1996, Discret. Appl. Math..

[49]  J. Geiselmann,et al.  Structural kinetics of transcription activation at the malT promoter of Escherichia coli by UV laser footprinting. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[50]  T. D. Schneider,et al.  Information analysis of Fis binding sites. , 1997, Nucleic acids research.

[51]  N. W. Davis,et al.  The complete genome sequence of Escherichia coli K-12. , 1997, Science.

[52]  T. D. Schneider,et al.  Sequence walkers: a graphical method to display how binding proteins interact with DNA or RNA sequences. , 1997, Nucleic acids research.

[53]  T. D. Schneider,et al.  Information content of individual genetic sequences. , 1997, Journal of theoretical biology.

[54]  S. Busby,et al.  Region 2.5 of the Escherichia coli RNA polymerase σ70 subunit is responsible for the recognition of the ‘extended −10’ motif at promoters , 1997, The EMBO journal.

[55]  R. Blumenthal,et al.  A nucleoprotein activation complex between the leucine-responsive regulatory protein and DNA upstream of the gltBDF operon in Escherichia coli. , 1997, Journal of molecular biology.

[56]  M. Wösten Eubacterial sigma-factors. , 1998, FEMS microbiology reviews.

[57]  G. Church,et al.  A comprehensive library of DNA-binding site matrices for 55 proteins applied to the complete Escherichia coli K-12 genome. , 1998, Journal of molecular biology.

[58]  M. Freundlich,et al.  In vitro and in vivo characterization of three major dadAX promoters in Escherichia coli that are regulated by cyclic AMP-CRP and Lrp , 1998, Molecular and General Genetics MGG.

[59]  M. Thomas Record,et al.  RNA Polymerase-Promoter Interactions: the Comings and Goings of RNA Polymerase , 1998, Journal of bacteriology.

[60]  C. Gross,et al.  The functional and regulatory roles of sigma factors in transcription. , 1998, Cold Spring Harbor symposia on quantitative biology.

[61]  T. D. Schneider,et al.  Information analysis of human splice site mutations , 1998, Human mutation.

[62]  T. O’Halloran,et al.  The ferric uptake regulation (Fur) repressor is a zinc metalloprotein. , 1999, Biochemistry.

[63]  R. Ebright,et al.  Transcription activation by catabolite activator protein (CAP). , 1999, Journal of molecular biology.

[64]  T. D. Schneider,et al.  Using sequence logos and information analysis of Lrp DNA binding sites to investigate discrepancies between natural selection and SELEX. , 1999, Nucleic acids research.

[65]  P. Angrand,et al.  Quantitative comparison of DNA looping in vitro and in vivo: chromatin increases effective DNA flexibility at short distances , 1999, The EMBO journal.

[66]  M. Freundlich,et al.  Lrp binds to two regions in the dadAX promoter region of Escherichia coli to repress and activate transcription directly , 1999, Molecular Microbiology.

[67]  G. Storz,et al.  Small RNAs in Escherichia coli. , 1999, Trends in microbiology.

[68]  P. Dehaseth,et al.  Protein-nucleic acid interactions during open complex formation investigated by systematic alteration of the protein and DNA binding partners. , 1999, Biochemistry.

[69]  J. Gralla,et al.  Escherichia coli promoter opening and −10 recognition: mutational analysis of σ70 , 2000 .

[70]  Kenneth E. Rudd,et al.  EcoGene: a genome sequence database for Escherichia coli K-12 , 2000, Nucleic Acids Res..

[71]  T. D. Schneider,et al.  Evolution of biological information. , 2000, Nucleic acids research.

[72]  S. Jeng,et al.  Binding Affinity of T7 RNA Polymerase to its Promoter in the Supercoiled and Linearized DNA Templates , 2000, Bioscience, biotechnology, and biochemistry.

[73]  E. Nevo,et al.  Ecologic genomics of DNA: upstream bending in prokaryotic promoters. , 2000, Genome research.

[74]  Hanah Margalit,et al.  PromEC: An updated database of Escherichia coli mRNA promoters with experimentally identified transcriptional start sites , 2001, Nucleic Acids Res..

[75]  Gary D. Stormo,et al.  Identifying target sites for cooperatively binding factors , 2001, Bioinform..

[76]  S Brunak,et al.  Genome organisation and chromatin structure in Escherichia coli. , 2001, Biochimie.

[77]  S. Darst,et al.  Bacterial RNA polymerase. , 2001, Current opinion in structural biology.

[78]  T. D. Schneider,et al.  Strong minor groove base conservation in sequence logos implies DNA distortion or base flipping during replication and transcription initiation. , 2001, Nucleic acids research.

[79]  A. Travers,et al.  DNA supercoiling and transcription in Escherichia coli: The FIS connection. , 2001, Biochimie.

[80]  Julio Collado-Vides,et al.  RegulonDB (version 3.2): transcriptional regulation and operon organization in Escherichia coli K-12 , 2001, Nucleic Acids Res..

[81]  Siddhartha Roy,et al.  A “master” in base unpairing during isomerization of a promoter upon RNA polymerase binding , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[82]  T. D. Schneider,et al.  The P1 phage replication protein RepA contacts an otherwise inaccessible thymine N3 proton by DNA distortion or base flipping. , 2001, Nucleic acids research.

[83]  T. D. Schneider,et al.  Anatomy of Escherichia coli ribosome binding sites. , 2001, Journal of molecular biology.

[84]  Thomas A. Steitz,et al.  Structural Basis for the Transition from Initiation to Elongation Transcription in T7 RNA Polymerase , 2002, Science.

[85]  T. D. Schneider,et al.  Consensus sequence Zen. , 2002, Applied bioinformatics.

[86]  S. Darst,et al.  Structure of the Bacterial RNA Polymerase Promoter Specificity σ Subunit , 2002 .

[87]  K. Murakami,et al.  Structural Basis of Transcription Initiation: An RNA Polymerase Holoenzyme-DNA Complex , 2002, Science.

[88]  S. Yokoyama,et al.  Crystal structure of a bacterial RNA polymerase holoenzyme at 2.6 Å resolution , 2002, Nature.

[89]  Gary Parkinson,et al.  Structural Basis of Transcription Activation: The CAP-αCTD-DNA Complex , 2002, Science.

[90]  L. Mirny,et al.  Structural analysis of conserved base pairs in protein-DNA complexes. , 2002, Nucleic acids research.

[91]  S. Halford,et al.  How to get from A to B: strategies for analysing protein motion on DNA , 2002, European Biophysics Journal.

[92]  C. Gross,et al.  Views of Transcription Initiation , 2002, Cell.

[93]  H. Margalit,et al.  A survey of small RNA-encoding genes in Escherichia coli. , 2003, Nucleic acids research.

[94]  Julio Collado-Vides,et al.  Sigma70 promoters in Escherichia coli: specific transcription in dense regions of overlapping promoter-like signals. , 2003, Journal of molecular biology.

[95]  T. D. Schneider,et al.  Molecular flip-flops formed by overlapping Fis sites. , 2003, Nucleic acids research.

[96]  S. Adhya,et al.  Effect of varying the supercoiling of DNA on transcription and its regulation. , 2003, Biochemistry.

[97]  Fumio Arisaka,et al.  Bacteriophage T4 Genome , 2003, Microbiology and Molecular Biology Reviews.

[98]  Peter K Rogan,et al.  Information theory-based analysis of CYP2C19, CYP2D6 and CYP3A5 splicing mutations. , 2003, Pharmacogenetics.

[99]  P. Dehaseth,et al.  Probing the role of region 2 of Escherichia coli sigma 70 in nucleation and maintenance of the single-stranded DNA bubble in RNA polymerase-promoter open complexes. , 2003, Methods in enzymology.

[100]  Javier Arsuaga,et al.  Genomic transcriptional response to loss of chromosomal supercoiling in Escherichia coli , 2004, Genome Biology.

[101]  S. Adhya,et al.  An Unsubstituted C2 Hydrogen of Adenine Is Critical and Sufficient at the –11 Position of a Promoter to Signal Base Pair Deformation* , 2004, Journal of Biological Chemistry.

[102]  C. Gross,et al.  Minimal Machinery of RNA Polymerase Holoenzyme Sufficient for Promoter Melting , 2004, Science.

[103]  S. Busby,et al.  The regulation of bacterial transcription initiation , 2004, Nature Reviews Microbiology.

[104]  Siddhartha Roy,et al.  Asynchronous basepair openings in transcription initiation: CRP enhances the rate‐limiting step , 2004, The EMBO journal.

[105]  M. Buckle,et al.  Real-time characterization of intermediates in the pathway to open complex formation by Escherichia coli RNA polymerase at the T7A1 promoter. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[106]  S. Gottesman,et al.  Effect of RyhB Small RNA on Global Iron Use in Escherichia coli , 2005, Journal of bacteriology.

[107]  Robert G. Martin,et al.  Detection of low-level promoter activity within open reading frame sequences of Escherichia coli , 2005, Nucleic acids research.

[108]  Andrew Travers,et al.  DNA supercoiling — a global transcriptional regulator for enterobacterial growth? , 2005, Nature Reviews Microbiology.

[109]  K. Severinov,et al.  Remodeling of the sigma70 subunit non-template DNA strand contacts during the final step of transcription initiation. , 2005, Journal of molecular biology.

[110]  Thomas D. Schneider,et al.  Comparative analysis of tandem T7-like promoter containing regions in enterobacterial genomes reveals a novel group of genetic islands , 2006, Nucleic acids research.

[111]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[112]  Konstantin Severinov,et al.  A Consensus Adenine at Position –11 of the Nontemplate Strand of Bacterial Promoter Is Important for Nucleation of Promoter Melting* , 2006, Journal of Biological Chemistry.

[113]  S. Semsey,et al.  Three-stage regulation of the amphibolic gal operon: from repressosome to GalR-free DNA. , 2006, Journal of molecular biology.