Deep Scattering: Rendering Atmospheric Clouds with Radiance-Predicting Neural Networks

We present a technique for efficiently synthesizing images of atmospheric clouds using a combination of Monte Carlo integration and neural networks. The intricacies of Lorenz-Mie scattering and the high albedo of cloud-forming aerosols make rendering of clouds—e.g. the characteristic silverlining and the “whiteness” of the inner body—challenging for methods based solely on Monte Carlo integration or diffusion theory. We approach the problem differently. Instead of simulating all light transport during rendering, we pre-learn the spatial and directional distribution of radiant flux from tens of cloud exemplars. To render a new scene, we sample visible points of the cloud and, for each, extract a hierarchical 3D descriptor of the cloud geometry with respect to the shading location and the light source. The descriptor is input to a deep neural network that predicts the radiance function for each shading configuration. We make the key observation that progressively feeding the hierarchical descriptor into the network enhances the network’s ability to learn faster and predict with higher accuracy while using fewer coefficients. We also employ a block design with residual connections to further improve performance. A GPU implementation of our method synthesizes images of clouds that are nearly indistinguishable from the reference solution within seconds to minutes. Our method thus represents a viable solution for applications such as cloud design and, thanks to its temporal stability, for high-quality production of animated content.

[1]  Eugene d'Eon,et al.  A quantized-diffusion model for rendering translucent materials , 2011, ACM Trans. Graph..

[2]  G. Mie Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen , 1908 .

[3]  Kei Iwasaki,et al.  Toward Optimal Space Partitioning for Unbiased, Adaptive Free Path Sampling of Inhomogeneous Participating Media , 2011, Comput. Graph. Forum.

[4]  Wojciech Jarosz,et al.  Beyond points and beams , 2017, ACM Trans. Graph..

[5]  Derek Nowrouzezahrai,et al.  A comprehensive theory of volumetric radiance estimation using photon points and beams , 2011, TOGS.

[6]  H. Weickmann,et al.  PHYSICAL PROPERTIES OF CUMULUS CLOUDS , 1953 .

[7]  Matthias Zwicker,et al.  Radiance caching for participating media , 2008, TOGS.

[8]  Mateu Sbert,et al.  Real-time multiple scattering in participating media with illumination networks , 2005, EGSR '05.

[9]  Yoshinori Dobashi,et al.  Display of clouds taking into account multiple anisotropic scattering and sky light , 1996, SIGGRAPH.

[10]  Leonidas J. Guibas,et al.  Metropolis light transport , 1997, SIGGRAPH.

[11]  Nelson L. Max,et al.  Interactive multiple anisotropic scattering in clouds , 2008, I3D '08.

[12]  Kei Iwasaki,et al.  Visual simulation of clouds , 2017, Vis. Informatics.

[13]  Jos Stam,et al.  Multiple Scattering as a Diffusion Process , 1995, Rendering Techniques.

[14]  David S. Ebert,et al.  Efficient Rendering of Atmospheric Phenomena , 2004, Rendering Techniques.

[15]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[16]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[17]  Kazufumi Kaneda,et al.  A simple, efficient method for realistic animation of clouds , 2000, SIGGRAPH.

[18]  James T. Kajiya,et al.  Ray tracing volume densities , 1984, SIGGRAPH.

[19]  Christopher D. Kulla,et al.  Eurographics Symposium on Rendering 2012 Importance Sampling Techniques for Path Tracing in Participating Media , 2022 .

[20]  G. Rybicki Radiative transfer , 2019, Climate Change and Terrestrial Ecosystem Modeling.

[21]  Mark Meyer,et al.  Kernel-predicting convolutional networks for denoising Monte Carlo renderings , 2017, ACM Trans. Graph..

[22]  Derek Nowrouzezahrai,et al.  Joint importance sampling of low-order volumetric scattering , 2013, ACM Trans. Graph..

[23]  Toshiya Hachisuka,et al.  Directional Dipole Model for Subsurface Scattering , 2014, ACM Trans. Graph..

[24]  Carol O'Sullivan,et al.  Accelerated Light Propagation Through Participating Media , 2007, VG@Eurographics.

[25]  László Szirmay-Kalos,et al.  Free Path Sampling in High Resolution Inhomogeneous Participating Media , 2011, Comput. Graph. Forum.

[26]  Thomas Ertl,et al.  Flux‐Limited Diffusion for Multiple Scattering in Participating Media , 2014, Comput. Graph. Forum.

[27]  Alexander Keller,et al.  Unbiased Global Illumination with Participating Media , 2008 .

[28]  Yves D. Willems,et al.  Rendering Participating Media with Bidirectional Path Tracing , 1996, Rendering Techniques.

[29]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[30]  Hans-Peter Seidel,et al.  Interactive cloud rendering using temporally coherent photon mapping , 2012, Comput. Graph..

[31]  Brian McWilliams,et al.  The Shattered Gradients Problem: If resnets are the answer, then what is the question? , 2017, ICML.

[32]  Alexander Keller,et al.  Metropolis Light Transport for Participating Media , 2000, Rendering Techniques.

[33]  Nils Thürey,et al.  Data-driven synthesis of smoke flows with CNN-based feature descriptors , 2017, ACM Trans. Graph..

[34]  Jan Novák,et al.  Residual ratio tracking for estimating attenuation in participating media , 2014, ACM Trans. Graph..

[35]  Per H. Christensen,et al.  Efficient simulation of light transport in scenes with participating media using photon maps , 1998, SIGGRAPH.

[36]  Matthias Zwicker,et al.  The Beam Radiance Estimate for Volumetric Photon Mapping , 2008, SIGGRAPH '08.

[37]  Koray Kavukcuoglu,et al.  Pixel Recurrent Neural Networks , 2016, ICML.

[38]  GrossMarkus,et al.  Efficient rendering of heterogeneous polydisperse granular media , 2016 .

[39]  Pascal Vincent,et al.  Representation Learning: A Review and New Perspectives , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[40]  Derek Nowrouzezahrai,et al.  Unifying points, beams, and paths in volumetric light transport simulation , 2014, ACM Trans. Graph..

[41]  Henrik Wann Jensen,et al.  Light diffusion in multi-layered translucent materials , 2005, ACM Trans. Graph..

[42]  Jan Novák,et al.  Spectral and decomposition tracking for rendering heterogeneous volumes , 2017, ACM Trans. Graph..

[43]  Stephen Lin,et al.  Global illumination with radiance regression functions , 2013, ACM Trans. Graph..

[44]  Anselmo Lastra,et al.  Real‐Time Cloud Rendering , 2001, Comput. Graph. Forum.

[45]  Wojciech Jarosz,et al.  Rendering participating media , 2008, International Conference on Computer Graphics and Interactive Techniques.

[46]  Kei Iwasaki,et al.  Unbiased, adaptive stochastic sampling for rendering inhomogeneous participating media , 2010, ACM Trans. Graph..

[47]  Steve Marschner,et al.  A practical model for subsurface light transport , 2001, SIGGRAPH.

[48]  Derek Nowrouzezahrai,et al.  Virtual ray lights for rendering scenes with participating media , 2012, ACM Trans. Graph..

[49]  Hans-Peter Seidel,et al.  Principal-Ordinates Propagation for real-time rendering of participating media , 2014, Comput. Graph..

[50]  Steve Marschner,et al.  Eurographics Symposium on Rendering (2007) Jan Kautz and Sumanta Pattanaik (Editors) Abstract Rendering Discrete Random Media Using Precomputed Scattering Solutions , 2022 .