Well-Solvable Special Cases of the Traveling Salesman Problem: A Survey

The traveling salesman problem (TSP) belongs to the most basic, most important, and most investigated problems in combinatorial optimization. Although it is an ${\cal NP}$-hard problem, many of its special cases can be solved efficiently in polynomial time. We survey these special cases with emphasis on the results that have been obtained during the decade 1985--1995. This survey complements an earlier survey from 1985 compiled by Gilmore, Lawler, and Shmoys [The Traveling Salesman Problem---A Guided Tour of Combinatorial Optimization, Wiley, Chichester, pp. 87--143].

[1]  Hans Röck,et al.  The Three-Machine No-Wait Flow Shop is NP-Complete , 1984, JACM.

[2]  Michael A. Trick,et al.  The Structure of Circular Decomposable Metrics , 1996, ESA.

[3]  Harilaos N. Psaraftis,et al.  A Dynamic Programming Approach for Sequencing Groups of Identical Jobs , 1980, Oper. Res..

[4]  Jacobus Antonius Adelbertus van der Veen Solvable cases of the traveling salesman problem with various objective functions , 1992 .

[5]  Yannis Manolopoulos,et al.  The Optimum Execution Order of Queries in Linear Storage , 1990, Inf. Process. Lett..

[6]  Gerhard J. Woeginger,et al.  Sometimes Travelling is Easy: The Master Tour Problem , 1998, SIAM J. Discret. Math..

[7]  Gérard Cornuéjols,et al.  The traveling salesman problem in graphs with 3-edge cutsets , 1985, JACM.

[8]  Gerhard J. Woeginger,et al.  Hamiltonian cycles in circulant digraphs with two stripes , 1997, Discret. Math..

[9]  R. K. Arora,et al.  Scheduling in a Semi-Ordered Flow-shop Without Intermediate Queues , 1980 .

[10]  H. D. Ratliff,et al.  Order-Picking in a Rectangular Warehouse: A Solvable Case of the Traveling Salesman Problem , 1983, Oper. Res..

[11]  Vašek Chvátal A note on the traveling salesman problem , 1989 .

[12]  Gerhard J. Woeginger,et al.  Sequencing jobs that require common resources on a single machine: A solvable case of the TSP , 1998, Math. Program..

[13]  Louis V. Quintas,et al.  On Some Properties of Shortest Hamiltonian Circuits , 1965 .

[14]  Gerard Sierksma,et al.  Pyramidal tours and the traveling salesman problem , 1991 .

[15]  Jean Fonlupt,et al.  Dynamic programming and the graphical traveling salesman problem , 1993, JACM.

[16]  Christos H. Papadimitriou,et al.  The Traveling Salesman Problem with Many Visits to Few Cities , 1984, SIAM J. Comput..

[17]  M. Cutler Efficient special case algorithms for the n-line planar traveling salesman problem , 1980, Networks.

[18]  Gérard Cornuéjols,et al.  Halin graphs and the travelling salesman problem , 1983, Math. Program..

[19]  D. Suprunenko The values of a linear form on a set of permutations , 1968 .

[20]  Jayme Luiz Szwarcfiter,et al.  Hamilton Paths in Grid Graphs , 1982, SIAM J. Comput..

[21]  Jan Karel Lenstra,et al.  Complexity of machine scheduling problems , 1975 .

[22]  Bernhard Fleischmann,et al.  A new class of cutting planes for the symmetric travelling salesman problem , 1988, Math. Program..

[23]  Brian W. Kernighan,et al.  An Effective Heuristic Algorithm for the Traveling-Salesman Problem , 1973, Oper. Res..

[24]  Gerhard J. Woeginger,et al.  The Travelling Salesman Problem on Permuted Monge Matrices , 1998, J. Comb. Optim..

[25]  Gerhard J. Woeginger,et al.  A solvable case of the quadratic assignment problem , 1998, Oper. Res. Lett..

[26]  Miłosz Michalski On a class of polynomially solvable travelling salesman problems , 1987 .

[27]  Gerhard J. Woeginger,et al.  Three easy special cases of the euclidean travelling salesman problem , 1997 .

[28]  M. R. Rao,et al.  Combinatorial Optimization , 1992, NATO ASI Series.

[29]  Gregory Gutin,et al.  Maximizing Traveling Salesman Problem for Special Matrices , 1995, Discret. Appl. Math..

[30]  Ramaswamy Chandrasekaran Recognition of Gilmore-Gomory traveling salesman problem , 1986, Discret. Appl. Math..

[31]  Horst W. Hamacher,et al.  Combinatorial Optimization Models Motivated by Robotic Assembly Problems , 1992 .

[32]  M. M. Flood The Traveling-Salesman Problem , 1956 .

[33]  R E Gomory,et al.  A SOLVABLE CASE OF THE TRAVELING SALESMAN PROBLEM. , 1964, Proceedings of the National Academy of Sciences of the United States of America.

[34]  Timothy J. Lowe,et al.  The Product Matrix Traveling Salesman Problem: An Application and Solution Heuristic , 1987, Oper. Res..

[35]  V. Deineko,et al.  On the recognition of permuted Supnick and incomplete Monge matrices , 1996, Acta Informatica.

[36]  Zsolt Tuza,et al.  Hamiltonian properties of Toeplitz graphs , 1996, Discret. Math..

[37]  Günter Rote,et al.  The Convex-Hull-and-Line Traveling Salesman Problem: A Solvable Case , 1994, Inf. Process. Lett..

[38]  Katarína Cechlárová,et al.  On the monge property of matrices , 1990, Discret. Math..

[39]  Renate GURKE,et al.  The approximate solution of the Euclidean traveling salesman problem on a CRAY X-MP , 1988, Parallel Comput..

[40]  V. S. Aizenshtat,et al.  Certain classes of traveling-salesman problems , 1978 .

[41]  Giovanni Rinaldi,et al.  The Crown Inequalities for the Symmetric Traveling Salesman Polytope , 1992, Math. Oper. Res..

[42]  Denis Naddef The Binested Inequalities for the Symmetric Traveling Salesman Polytope , 1992, Math. Oper. Res..

[43]  Gerard Sierksma,et al.  Small and large TSP: Two polynomially solvable cases of the traveling salesman problem , 1993 .

[44]  E. A. vanDoorn Connectivity of circulant digraphs , 1983 .

[45]  Gerhard J. Woeginger,et al.  The Maximum Travelling Salesman Problem on Symmetric Demidenko Matrices , 2000, Discret. Appl. Math..

[46]  D. A. Wismer,et al.  Solution of the Flowshop-Scheduling Problem with No Intermediate Queues , 1972, Oper. Res..

[47]  Rainer E. Burkard,et al.  Efficiently solvable special cases of bottleneck travelling salesman problems , 1991, Discret. Appl. Math..

[48]  Giovanni Rinaldi,et al.  The symmetric traveling salesman polytope and its graphical relaxation: Composition of valid inequalities , 1991, Math. Program..

[49]  Richard H. Warren,et al.  Special cases of the traveling salesman problem , 1994 .

[50]  Robert D. Plante,et al.  The Nozzle Guide Vane Problem , 1988, Oper. Res..

[51]  Kenneth Kalmanson Edgeconvex Circuits and the Traveling Salesman Problem , 1975, Canadian Journal of Mathematics.

[52]  José Vasconcelos Ferreira,et al.  A Travelling Salesman Model for the Sequencing of Duties in Bus Crew Rotas , 1995 .

[53]  G. Rothe Two solvable cases of the Traveling Salesman Problem , 1988 .

[54]  Günter Rote,et al.  Testing the Necklace Condition for Shortest Tours and Optimal Factors in the Plane , 1987, ICALP.

[55]  Gerhard J. Woeginger,et al.  The cone of Monge matrices: Extremal rays and applications , 1995, Math. Methods Oper. Res..

[56]  Eugene L. Lawler,et al.  The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization , 1985 .

[57]  Ján Plesník,et al.  The NP-Completeness of the Hamiltonian Cycle Problem in Planar Digraphs with Degree Bound Two , 1979, Inf. Process. Lett..

[58]  Ulrich Derigs,et al.  Monge sequences and a simple assignment algorithm , 1986, Discret. Appl. Math..

[59]  Michael O. Ball,et al.  Sequencing of Insertions in Printed Circuit Board Assembly , 1988, Oper. Res..

[60]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[61]  Jean Fonlupt,et al.  The traveling salesman problem in graphs with some excluded minors , 1992, Math. Program..

[62]  Shuzhong Zhang,et al.  Low-complexity algorithms for sequencing jobs with a fixed number of job-classes , 1996, Comput. Oper. Res..

[63]  Louis V. Quintas,et al.  Extrema in space-time , 1966 .

[64]  Jack A. A. van der Veen A New Class of Pyramidally Solvable Symmetric Traveling Salesman Problems , 1994, SIAM J. Discret. Math..

[65]  E. Lawler,et al.  Well-solved special cases , 1985 .

[66]  Gerhard J. Woeginger,et al.  The Convex-Hull-and-k-Line Travelling Salesman Problem , 1996, Inf. Process. Lett..

[67]  Guy Melard,et al.  Permutational extreme values of autocorrelation coefficients and a Pitman test against serial dependence , 1992 .

[68]  Ting-Yi Sung,et al.  A polynomial-time solution to Papadimitriou and Steiglitz's 'traps' , 1988 .

[69]  James K. Park A Special Case of the n-Vertex Traveling-Salesman Problem that can be Solved in O(n) Time , 1991, Inf. Process. Lett..

[70]  R. Burkard SPECIAL CASES OF TRAVELLING SALESMAN PROBLEMS AND HEURISTICS , 1990 .

[71]  R. Burkard,et al.  Universal Conditions for Algebraic Traveling Salesman Problems to be Efficiently Solvable , 1991 .

[72]  Christos H. Papadimitriou,et al.  The Euclidean Traveling Salesman Problem is NP-Complete , 1977, Theor. Comput. Sci..

[73]  R. Gomory,et al.  Sequencing a One State-Variable Machine: A Solvable Case of the Traveling Salesman Problem , 1964 .

[74]  Abraham P. Punnen,et al.  The travelling salesman problem: new solvable cases and linkages with the development of approximation algorithms , 1997 .

[75]  Louis V. Quintas,et al.  Extreme Hamiltonian circuits. Resolution of the convex-even case , 1964 .

[76]  M. Padberg,et al.  On the symmetric travelling salesman problem II , 1979 .

[77]  Günter Rote The n-line traveling salesman problem , 1992, Networks.

[78]  F. Supnick,et al.  Extreme Hamiltonian Lines , 1957 .

[79]  C. V. Ramamoorthy,et al.  On the Flow-Shop Sequencing Problem with No Wait in Process † , 1972 .

[80]  Gérard Cornuéjols,et al.  The traveling salesman problem on a graph and some related integer polyhedra , 1985, Math. Program..

[81]  Christos H. Papadimitriou,et al.  Flowshop scheduling with limited temporary storage , 1980, JACM.

[82]  Ralph Tindell,et al.  Circulants and their connectivities , 1984, J. Graph Theory.

[83]  Alok Aggarwal,et al.  Geometric Applications of a Matrix Searching Algorithm , 1986, Symposium on Computational Geometry.

[84]  René van Dal,et al.  Solvable Cases of the No-Wait Flow-Shop Scheduling Problem , 1991 .

[85]  V. S. Aizenshtat,et al.  Minimum of a linear form on the set of all complete cycles of the symmetric group Sn , 1968 .

[86]  Robert S. Garfinkel,et al.  Minimizing Wallpaper Waste, Part 1: A Class of Traveling Salesman Problems , 1977, Oper. Res..

[87]  Kenneth Steiglitz,et al.  Some Examples of Difficult Traveling Salesman Problems , 1978, Oper. Res..

[88]  David Eppstein,et al.  Sequence Comparison with Mixed Convex and Concave Costs , 1990, J. Algorithms.

[89]  Christos H. Papadimitriou,et al.  Computational complexity , 1993 .

[90]  Giovanni Rinaldi,et al.  The graphical relaxation: A new framework for the symmetric traveling salesman polytope , 1993, Math. Program..

[91]  Rainer E. Burkard,et al.  Perspectives of Monge Properties in Optimization , 1996, Discret. Appl. Math..