Orbitofrontal control of visual cortex gain promotes visual associative learning

Signaling of expected outcomes in the orbitofrontal cortex (OFC) is critical for outcome-guided and learning behavior. The OFC projects to primary visual cortex (V1), yet the function of this top-down projection is unclear. We found that optogenetic activation of OFC projection to V1 reduced the amplitude of V1 visual responses via the recruitment of local somatostatin-expressing (SST) interneurons. Using mice performing a Go/No-Go visual task, we showed that the OFC projection to V1 mediated the suppression of V1 responses to the reward-irrelevant No-Go stimulus. Furthermore, the responses of V1-projecting OFC neurons to No-Go stimulus were reduced when the mice’s expectation was incorrect. In addition, optogenetic inactivation of OFC projection to V1 impaired, whereas activation of SST interneurons in V1 improved the learning of Go/No-Go visual task. Thus, OFC top-down projection to V1 is crucial to drive visual associative learning by reducing the response gain of V1 neurons to non-relevant stimulus.

[1]  J. Price,et al.  Sensory and premotor connections of the orbital and medial prefrontal cortex of macaque monkeys , 1995, The Journal of comparative neurology.

[2]  W. Schultz,et al.  Modifications of reward expectation-related neuronal activity during learning in primate orbitofrontal cortex. , 2000, Journal of neurophysiology.

[3]  L. Looger,et al.  A Designer AAV Variant Permits Efficient Retrograde Access to Projection Neurons , 2016, Neuron.

[4]  T. Komiyama,et al.  Circuit Mechanisms of Sensorimotor Learning , 2016, Neuron.

[5]  Geoffrey Schoenbaum,et al.  Lesions of orbitofrontal cortex and basolateral amygdala complex disrupt acquisition of odor-guided discriminations and reversals. , 2003, Learning & memory.

[6]  Elizabeth A. West,et al.  Transient Inactivation of Orbitofrontal Cortex Blocks Reinforcer Devaluation in Macaques , 2011, The Journal of Neuroscience.

[7]  S. Mizumori,et al.  Prefrontal Regulation of Neuronal Activity in the Ventral Tegmental Area. , 2016, Cerebral cortex.

[8]  Rui Costa,et al.  Premotor cortex is critical for goal-directed actions , 2013, Front. Comput. Neurosci..

[9]  Katherine M. Armstrong,et al.  Selective gating of visual signals by microstimulation of frontal cortex , 2003, Nature.

[10]  G. Schoenbaum,et al.  Back to basics: Making predictions in the orbitofrontal–amygdala circuit , 2016, Neurobiology of Learning and Memory.

[11]  J. Bachevalier,et al.  The effects of selective amygdala, orbital frontal cortex or hippocampal formation lesions on reward assessment in nonhuman primates , 2007, The European journal of neuroscience.

[12]  G. Schoenbaum,et al.  Orbitofrontal cortex and basolateral amygdala encode expected outcomes during learning , 1998, Nature Neuroscience.

[13]  W. Schultz,et al.  Relative reward preference in primate orbitofrontal cortex , 1999, Nature.

[14]  C. Padoa-Schioppa,et al.  Neurons in the orbitofrontal cortex encode economic value , 2006, Nature.

[15]  Arthur W. Toga,et al.  Neural Networks of the Mouse Neocortex , 2014, Cell.

[16]  C. Gilbert,et al.  Top-down influences on visual processing , 2013, Nature Reviews Neuroscience.

[17]  Geoffrey Schoenbaum,et al.  Rapid Associative Encoding in Basolateral Amygdala Depends on Connections with Orbitofrontal Cortex , 2005, Neuron.

[18]  Y. Niv,et al.  Ventral Striatum and Orbitofrontal Cortex Are Both Required for Model-Based, But Not Model-Free, Reinforcement Learning , 2011, The Journal of Neuroscience.

[19]  E. Murray,et al.  The Orbitofrontal Oracle: Cortical Mechanisms for the Prediction and Evaluation of Specific Behavioral Outcomes , 2014, Neuron.

[20]  Robert C. Wilson,et al.  Expectancy-related changes in firing of dopamine neurons depend on orbitofrontal cortex , 2011, Nature Neuroscience.

[21]  G. Schoenbaum,et al.  Orbitofrontal Cortex and Representation of Incentive Value in Associative Learning , 1999, The Journal of Neuroscience.

[22]  Hassana K. Oyibo,et al.  Experience-dependent spatial expectations in mouse visual cortex , 2016, Nature Neuroscience.

[23]  Ian R. Wickersham,et al.  Monosynaptic circuit tracing in vivo through Cre-dependent targeting and complementation of modified rabies virus , 2010, Proceedings of the National Academy of Sciences.

[24]  S. E. Kwon,et al.  Sensory and decision-related activity propagate in a cortical feedback loop during touch perception , 2016, Nature Neuroscience.

[25]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 2005, IEEE Transactions on Neural Networks.

[26]  Geoffrey Schoenbaum,et al.  The role of the orbitofrontal cortex in the pursuit of happiness and more specific rewards , 2008, Nature.

[27]  Geoffrey Schoenbaum,et al.  Different Roles for Orbitofrontal Cortex and Basolateral Amygdala in a Reinforcer Devaluation Task , 2003, The Journal of Neuroscience.

[28]  Matthew P. H. Gardner,et al.  Lateral Orbitofrontal Inactivation Dissociates Devaluation-Sensitive Behavior and Economic Choice , 2017, Neuron.

[29]  M. Roesch,et al.  Neuronal Activity Related to Reward Value and Motivation in Primate Frontal Cortex , 2004, Science.

[30]  M. Bear,et al.  A Cholinergic Mechanism for Reward Timing within Primary Visual Cortex , 2013, Neuron.

[31]  H Eichenbaum,et al.  Information coding in the rodent prefrontal cortex. I. Single-neuron activity in orbitofrontal cortex compared with that in pyriform cortex. , 1995, Journal of neurophysiology.

[32]  Georg B. Keller,et al.  Learning Enhances Sensory and Multiple Non-sensory Representations in Primary Visual Cortex , 2015, Neuron.

[33]  R. Reid,et al.  Frontiers in Cellular Neuroscience Cellular Neuroscience Methods Article , 2022 .

[34]  Geoffrey Schoenbaum,et al.  Neural Estimates of Imagined Outcomes in the Orbitofrontal Cortex Drive Behavior and Learning , 2013, Neuron.

[35]  E. Murray,et al.  Dissociable Effects of Subtotal Lesions within the Macaque Orbital Prefrontal Cortex on Reward-Guided Behavior , 2011, The Journal of Neuroscience.

[36]  Joshua L. Jones,et al.  Orbitofrontal Cortex Supports Behavior and Learning Using Inferred But Not Cached Values , 2012, Science.

[37]  S. Kennerley,et al.  Evaluating choices by single neurons in the frontal lobe: outcome value encoded across multiple decision variables , 2009, The European journal of neuroscience.

[38]  M. Roesch,et al.  The Orbitofrontal Cortex and Ventral Tegmental Area Are Necessary for Learning from Unexpected Outcomes , 2009, Neuron.

[39]  R. Yuste,et al.  Controlling Visually Guided Behavior by Holographic Recalling of Cortical Ensembles , 2019, Cell.

[40]  S. Thorpe,et al.  The orbitofrontal cortex: Neuronal activity in the behaving monkey , 2004, Experimental Brain Research.

[41]  J. O'Doherty,et al.  What We Know and Do Not Know about the Functions of the Orbitofrontal Cortex after 20 Years of Cross-Species Studies , 2007, The Journal of Neuroscience.

[42]  Y. Dan,et al.  Long-range and local circuits for top-down modulation of visual cortex processing , 2014, Science.

[43]  Hatim A. Zariwala,et al.  Neural correlates, computation and behavioural impact of decision confidence , 2008, Nature.

[44]  James M. Otis,et al.  Single-cell activity tracking reveals that orbitofrontal neurons acquire and maintain a long-term memory to guide behavioral adaptation , 2019, Nature Neuroscience.

[45]  A. B. Bonds,et al.  Are primate lateral geniculate nucleus (LGN) cells really sensitive to orientation or direction? , 2002, Visual Neuroscience.

[46]  B. Hangya,et al.  Distinct behavioural and network correlates of two interneuron types in prefrontal cortex , 2013, Nature.

[47]  Geoffrey Schoenbaum,et al.  Learning theory: A driving force in understanding orbitofrontal function , 2014, Neurobiology of Learning and Memory.

[48]  C. Niell,et al.  Layer-Specific Refinement of Visual Cortex Function after Eye Opening in the Awake Mouse , 2015, The Journal of Neuroscience.

[49]  C. Petersen,et al.  Membrane potential correlates of sensory perception in mouse barrel cortex , 2013, Nature Neuroscience.

[50]  R. Saunders,et al.  Prefrontal mechanisms of behavioral flexibility, emotion regulation and value updating , 2013, Nature Neuroscience.

[51]  P. Holland,et al.  Orbitofrontal lesions impair use of cue-outcome associations in a devaluation task. , 2005, Behavioral neuroscience.

[52]  Michela Gallagher,et al.  Lesions of Orbitofrontal Cortex Impair Rats' Differential Outcome Expectancy Learning But Not Conditioned Stimulus-Potentiated Feeding , 2005, The Journal of Neuroscience.

[53]  Troy W. Margrie,et al.  A Circuit for Integration of Head- and Visual-Motion Signals in Layer 6 of Mouse Primary Visual Cortex , 2018, Neuron.

[54]  Nicholas A. Steinmetz,et al.  Spontaneous behaviors drive multidimensional, brainwide activity , 2019, Science.

[55]  C. Cavada,et al.  The anatomical connections of the macaque monkey orbitofrontal cortex. A review. , 2000, Cerebral cortex.

[56]  S. Manita,et al.  A Top-Down Cortical Circuit for Accurate Sensory Perception , 2015, Neuron.

[57]  S. Wise,et al.  Interactions between orbital prefrontal cortex and amygdala: advanced cognition, learned responses and instinctive behaviors , 2010, Current Opinion in Neurobiology.

[58]  H. Groenewegen,et al.  Topographical organization and relationship with ventral striatal compartments of prefrontal corticostriatal projections in the rat , 1992, The Journal of comparative neurology.

[59]  Pingbo Yin,et al.  Orbitofrontal Cortex Neurons Respond to Sound and Activate Primary Auditory Cortex Neurons , 2018, Cerebral cortex.

[60]  K. Hikosaka,et al.  Delay activity of orbital and lateral prefrontal neurons of the monkey varying with different rewards. , 2000, Cerebral cortex.

[61]  Minmin Luo,et al.  Prospective Coding of Dorsal Raphe Reward Signals by the Orbitofrontal Cortex , 2015, The Journal of Neuroscience.

[62]  Takaki Komiyama,et al.  Learning enhances the relative impact of top-down processing in the visual cortex , 2015, Nature Neuroscience.

[63]  E. Miller,et al.  Neuronal activity in primate dorsolateral and orbital prefrontal cortex during performance of a reward preference task , 2003, The European journal of neuroscience.

[64]  Georg B. Keller,et al.  A Sensorimotor Circuit in Mouse Cortex for Visual Flow Predictions , 2017, Neuron.

[65]  Anne E Carpenter,et al.  Neuron-type specific signals for reward and punishment in the ventral tegmental area , 2011, Nature.

[66]  B. Balleine,et al.  Orbitofrontal Cortex Mediates Outcome Encoding in Pavlovian But Not Instrumental Conditioning , 2007, The Journal of Neuroscience.

[67]  E. Murray,et al.  Bilateral Orbital Prefrontal Cortex Lesions in Rhesus Monkeys Disrupt Choices Guided by Both Reward Value and Reward Contingency , 2004, The Journal of Neuroscience.

[68]  A. Dickinson,et al.  Neuronal coding of prediction errors. , 2000, Annual review of neuroscience.

[69]  Y. Niv,et al.  Dialogues on prediction errors , 2008, Trends in Cognitive Sciences.

[70]  Stephanie M. Groman,et al.  Orbitofrontal Circuits Control Multiple Reinforcement-Learning Processes , 2019, Neuron.

[71]  M. Roesch,et al.  A new perspective on the role of the orbitofrontal cortex in adaptive behaviour , 2009, Nature Reviews Neuroscience.

[72]  M. Sahani,et al.  Distinct learning-induced changes in stimulus selectivity and interactions of GABAergic interneuron classes in visual cortex , 2018, Nature Neuroscience.

[73]  G. Schoenbaum,et al.  Orbitofrontal lesions eliminate signaling of biological significance in cue-responsive ventral striatal neurons , 2015, Nature Communications.

[74]  Seiji Nishino,et al.  Basal forebrain circuit for sleep-wake control , 2015, Nature Neuroscience.

[75]  J. P. Jones,et al.  The two-dimensional spatial structure of simple receptive fields in cat striate cortex. , 1987, Journal of neurophysiology.

[76]  Masaya Harada,et al.  Stochastic synaptic plasticity underlying compulsion in a model of addiction , 2018, Nature.

[77]  M. Scanziani,et al.  Inhibition of Inhibition in Visual Cortex: The Logic of Connections Between Molecularly Distinct Interneurons , 2013, Nature Neuroscience.

[78]  Dean V Buonomano,et al.  Differential Encoding of Time by Prefrontal and Striatal Network Dynamics , 2017, The Journal of Neuroscience.

[79]  J. Pearce,et al.  A model for Pavlovian learning: Variations in the effectiveness of conditioned but not of unconditioned stimuli. , 1980 .

[80]  Haishan Yao,et al.  Control of response reliability by parvalbumin-expressing interneurons in visual cortex , 2015, Nature Communications.