Isothermal and thermomechanical fatigue behaviour of Ti–6Al–4V titanium alloy

Abstract In this study, the overall view of in-house development of thermomechanical fatigue (TMF) test capability has been presented. Using this test facility, mechanical strain controlled in-phase (IP) and out-of-phase (OP) TMF behaviour of Ti–6Al–4V alloy has been investigated in the temperature range 100–400 °C with ramp heating and cooling rate of 2 °C/s. Isothermal low cycle fatigue (IF) tests have also been conducted at 100 °C and 400 °C for comparison with TMF data. The combined effect of development of tensile mean stresses and metallurgical degradation due to oxidation led to detrimental OP-TMF fatigue life as compared to IP-TMF and IF loading.

[1]  J. Planell,et al.  The effect of cooling rate on the cyclic deformation of β-annealed Ti–6Al–4V , 2003 .

[2]  R. Neu A MECHANISTIC-BASED THERMOMECHANICAL FATIGUE LIFE PREDICTION MODEL FOR METAL MATRIX COMPOSITES , 1993 .

[3]  H. Christ,et al.  Isothermal and thermomechanical fatigue of titanium alloys , 2010 .

[4]  Huseyin Cimenoglu,et al.  Oxidation of Ti-6Al-4V alloy , 2009 .

[5]  Paul Bowen,et al.  The effect of combined cycle fatigue upon the fatigue performance of TI–6AL–4V fan blade material , 2004 .

[6]  T. Goswami Fatigue crack growth behavior of Ti–6Al–4V alloy forging , 2003 .

[7]  K.-T. Rie,et al.  Low cycle fatigue and elasto-plastic behaviour of materials--3 , 1987 .

[8]  H. Sehitoglu,et al.  Thermomechanical fatigue of particulate-reinforced aluminum 2xxx-T4 , 1991 .

[9]  T. Takasugi,et al.  Effects of combined plasma-carburizing and shot-peening on fatigue and wear properties of Ti–6Al–4V alloy , 2009 .

[10]  S. Mall,et al.  Stress relaxation behavior of shot-peened Ti–6Al–4V under fretting fatigue at elevated temperature ☆ , 2004 .

[11]  Michael L. Heil,et al.  Predicting crack growth under thermo-mechanical cycling , 1989 .

[12]  W. Evans,et al.  Thermo-mechanical fatigue and fracture of INCO718 , 2008 .

[13]  H. Toda,et al.  High temperature low cycle fatigue and thermo-mechanical fatigue of a 6061Al reinforced with SiCW , 2000 .

[14]  B. Hillberry,et al.  Load history effects on fatigue crack growth threshold for Ti–6Al–4V and Ti-17 titanium alloys , 2001 .

[15]  Brad L. Boyce,et al.  Effect of load ratio and maximum stress intensity on the fatigue threshold in Ti–6Al–4V , 2001 .

[16]  H. Sehitoglu,et al.  Thermo-Mechanical Fatigue of Mar-M247: Part 1—Experiments , 1990 .

[17]  W. Harrigan Creep fracture characteristics of weld-repaired cast Ti-6Al-4V , 1974, Metallurgical and Materials Transactions B.

[18]  Shankar Mall,et al.  Fretting behavior of Ti-6Al-4V under combined high cycle and low cycle fatigue loading , 2001 .

[19]  Robert O. Ritchie,et al.  Foreign-object damage and high-cycle fatigue: role of microstructure in Ti–6Al–4V , 2001 .

[20]  Masakazu Okazaki,et al.  Thermo-mechanical fatigue failure of a single crystal Ni-based superalloy , 2008 .

[21]  H. Maier,et al.  Thermomechanical fatigue behavior of the high-temperature titanium alloy IMI 834 , 1998 .

[22]  C. Boehlert,et al.  Out-of-phase thermomechanical fatigue of titanium composite matrices , 1995 .

[23]  R. F. Hall,et al.  Effects of stress ratio and temperature on fatigue crack growth in a Ti–6Al–4V alloy , 2005 .

[24]  Robert L. Amaro,et al.  On thermo-mechanical fatigue in single crystal Ni-base superalloys , 2010 .

[25]  Z. G. Wang,et al.  Effect of microstructure on ultra-high cycle fatigue behavior of Ti-6Al-4V , 2008 .

[26]  Tilmann Beck,et al.  Temperature measurement and control methods in TMF testing – a comparison and evaluation , 2008 .

[27]  D. Garcia,et al.  Fractographic investigation of fretting fatigue cracks in Ti–6Al–4V , 2005 .

[28]  Huseyin Sehitoglu,et al.  Thermomechanical fatigue, oxidation, and creep: Part i. Damage mechanisms , 1989 .

[29]  R. Ritchie,et al.  Foreign-object damage and high-cycle fatigue of Ti-6Al-4V , 2001 .

[30]  J. Mendez,et al.  Influence of environment on low cycle fatigue damage in Ti6Al4V and Ti 6246 titanium alloys , 1996 .

[31]  W. J. Plumbridge,et al.  Damage production during high temperature-low cycle fatigue of a titanium alloy (IMI 829) , 1987 .