Recognition of Semaphorin Proteins by P. sordellii Lethal Toxin Reveals Principles of Receptor Specificity in Clostridial Toxins

[1]  K. Aktories,et al.  Monoglucosylation of low-molecular-mass GTP-binding Rho proteins by clostridial cytotoxins. , 1995, Trends in cell biology.

[2]  M. Weidmann,et al.  Toxins A and B from Clostridium difficile differ with respect to enzymatic potencies, cellular substrate specificities, and surface binding to cultured cells. , 1997, The Journal of clinical investigation.

[3]  W. Snider,et al.  The Transmembrane Protein Semaphorin 6A Repels Embryonic Sympathetic Axons , 2000, The Journal of Neuroscience.

[4]  William C Hahn,et al.  Lentivirus-delivered stable gene silencing by RNAi in primary cells. , 2003, RNA.

[5]  K. Aktories,et al.  Cellular Uptake of Clostridium difficile Toxin B , 2003, Journal of Biological Chemistry.

[6]  D. Stuart,et al.  The ligand-binding face of the semaphorins revealed by the high-resolution crystal structure of SEMA4D , 2003, Nature Structural Biology.

[7]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[8]  V. Poukens,et al.  Fatal toxic shock syndrome associated with Clostridium sordellii after medical abortion. , 2005, The New England journal of medicine.

[9]  Klaus Aktories,et al.  Bacterial cytotoxins: targeting eukaryotic switches , 2005, Nature Reviews Microbiology.

[10]  T. Yagi,et al.  Interactions between Plexin-A2, Plexin-A4, and Semaphorin 6A Control Lamina-Restricted Projection of Hippocampal Mossy Fibers , 2007, Neuron.

[11]  D. Snydman Fatal Toxic Shock Syndrome Associated with Clostridium sordellii after Medical Abortion , 2007 .

[12]  M. Prevost,et al.  Clostridium sordellii lethal toxin kills mice by inducing a major increase in lung vascular permeability. , 2007, The American journal of pathology.

[13]  S. Tenzer,et al.  Autocatalytic cleavage of Clostridium difficile toxin B , 2007, Nature.

[14]  K. Henrick,et al.  Inference of macromolecular assemblies from crystalline state. , 2007, Journal of molecular biology.

[15]  G. Jensen,et al.  An Improved Cryogen for Plunge Freezing , 2008, Microscopy and Microanalysis.

[16]  Henning Urlaub,et al.  GraFix: sample preparation for single-particle electron cryomicroscopy , 2008, Nature Methods.

[17]  J. Guarner,et al.  Undiagnosed cases of fatal Clostridium-associated toxic shock in Californian women of childbearing age. , 2009, American journal of obstetrics and gynecology.

[18]  C. H. Bell,et al.  Structural basis of semaphorin–plexin signalling , 2010, Nature.

[19]  Constantinos Zamboglou,et al.  Clostridial Glucosylating Toxins Enter Cells via Clathrin-Mediated Endocytosis , 2010, PloS one.

[20]  A. Yaron,et al.  Cis interaction between Semaphorin6A and Plexin‐A4 modulates the repulsive response to Sema6A , 2010, The EMBO journal.

[21]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[22]  K. Mitchell,et al.  Roles of Semaphorin-6B and Plexin-A2 in Lamina-Restricted Projection of Hippocampal Mossy Fibers , 2010, The Journal of Neuroscience.

[23]  Vincent B. Chen,et al.  Correspondence e-mail: , 2000 .

[24]  J. Takagi,et al.  Structural basis for semaphorin signalling through the plexin receptor , 2010, Nature.

[25]  Randy J. Read,et al.  Acta Crystallographica Section D Biological , 2003 .

[26]  D. Aronoff,et al.  TcsL Is an Essential Virulence Factor in Clostridium sordellii ATCC 9714 , 2011, Infection and Immunity.

[27]  G. Neufeld,et al.  Plexin-A4 promotes tumor progression and tumor angiogenesis by enhancement of VEGF and bFGF signaling. , 2011, Blood.

[28]  G. Neufeld,et al.  Semaphorins in angiogenesis and tumor progression. , 2012, Cold Spring Harbor perspectives in medicine.

[29]  D. Maric,et al.  Semaphorin 6A regulates angiogenesis by modulating VEGF signaling. , 2012, Blood.

[30]  Jun S. Liu,et al.  MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens , 2014, Genome Biology.

[31]  T. Brummelkamp,et al.  LRP1 is a receptor for Clostridium perfringens TpeL toxin indicating a two-receptor model of clostridial glycosylating toxins , 2014, Proceedings of the National Academy of Sciences.

[32]  J. Rubinstein,et al.  Fabrication of carbon films with ∼ 500nm holes for cryo-EM with a direct detector device. , 2014, Journal of structural biology.

[33]  S. Offermanns,et al.  Semaphorins and plexins as therapeutic targets , 2014, Nature Reviews Drug Discovery.

[34]  Jongbloets Bc,et al.  Semaphorin signalling during development. , 2014 .

[35]  D. Lacy,et al.  Translocation domain mutations affecting cellular toxicity identify the Clostridium difficile toxin B pore , 2014, Proceedings of the National Academy of Sciences.

[36]  Marcus A. Brubaker,et al.  Alignment of cryo-EM movies of individual particles by optimization of image translations. , 2014, Journal of structural biology.

[37]  H. Feng,et al.  Chondroitin sulfate proteoglycan 4 functions as the cellular receptor for Clostridium difficile toxin B , 2014, Cell Research.

[38]  Jinsong Sheng,et al.  Identification of an epithelial cell receptor responsible for Clostridium difficile TcdB-induced cytotoxicity , 2015, Proceedings of the National Academy of Sciences.

[39]  Michael J E Sternberg,et al.  The Phyre2 web portal for protein modeling, prediction and analysis , 2015, Nature Protocols.

[40]  Yigong Shi,et al.  Structure of a yeast spliceosome at 3.6-angstrom resolution , 2015, Science.

[41]  J. N. Kay,et al.  An extracellular biochemical screen reveals that FLRTs and Unc5s mediate neuronal subtype recognition in the retina , 2015, eLife.

[42]  D. Giedroc,et al.  Crystal structure of Clostridium difficile toxin A. , 2016, Nature microbiology.

[43]  B. Limbago,et al.  Vaginal and Rectal Clostridium sordellii and Clostridium perfringens Presence Among Women in the United States , 2016, Obstetrics and gynecology.

[44]  D. Stevens,et al.  A novel murine model of Clostridium sordellii myonecrosis: Insights into the pathogenesis of disease. , 2016, Anaerobe.

[45]  D. Giedroc,et al.  Crystal structure of Clostridium difficile toxin A , 2016, Nature Microbiology.

[46]  I. Graef,et al.  Reverse Signaling by Semaphorin-6A Regulates Cellular Aggregation and Neuronal Morphology , 2016, bioRxiv.

[47]  A. Brass,et al.  Frizzled are colonic epithelial receptors for Clostridium difficile toxin B , 2016, Nature.

[48]  D. Lacy,et al.  Functional defects in Clostridium difficile TcdB toxin uptake identify CSPG4 receptor-binding determinants , 2017, The Journal of Biological Chemistry.

[49]  D. Durocher,et al.  Evaluation and Design of Genome-Wide CRISPR/SpCas9 Knockout Screens , 2017, G3: Genes, Genomes, Genetics.

[50]  Joseph H. Davis,et al.  Addressing preferred specimen orientation in single-particle cryo-EM through tilting , 2017, Nature Methods.

[51]  J. Rini,et al.  Receptor-binding loops in alphacoronavirus adaptation and evolution , 2017, Nature Communications.

[52]  David J. Fleet,et al.  cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination , 2017, Nature Methods.

[53]  R. Melnyk,et al.  Clostridium difficile toxins A and B: Receptors, pores, and translocation into cells , 2017, Critical reviews in biochemistry and molecular biology.

[54]  Conrad C. Huang,et al.  UCSF ChimeraX: Meeting modern challenges in visualization and analysis , 2018, Protein science : a publication of the Protein Society.

[55]  K. Lam,et al.  Structural basis for recognition of frizzled proteins by Clostridium difficile toxin B , 2018, Science.

[56]  S. Whelan,et al.  Sulfated glycosaminoglycans and low-density lipoprotein receptor contribute to Clostridium difficile toxin A entry into cells , 2019, Nature Microbiology.

[57]  R. Read,et al.  Improvement of cryo-EM maps by density modification , 2019, Nature Methods.

[58]  Lan Huang,et al.  Structure of the full-length Clostridium difficile toxin B , 2019, Nature Structural & Molecular Biology.

[59]  Jia-huai Wang,et al.  Structural basis of assembly of the human T cell receptor–CD3 complex , 2019, Nature.

[60]  Dmitry Lyumkis,et al.  Challenges and opportunities in cryo-EM single-particle analysis , 2019, The Journal of Biological Chemistry.

[61]  J. Jakana,et al.  Selection and characterization of ultrahigh potency designed ankyrin repeat protein inhibitors of C. difficile toxin B , 2019, PLoS biology.

[62]  J. Moffat,et al.  Structure-guided design fine-tunes pharmacokinetics, tolerability, and antitumor profile of multispecific frizzled antibodies , 2019, Proceedings of the National Academy of Sciences.

[63]  E. Holmes,et al.  A new coronavirus associated with human respiratory disease in China , 2020, Nature.