ATP depletion induces translocation of STIM1 to puncta and formation of STIM1–ORAI1 clusters: translocation and re-translocation of STIM1 does not require ATP

[1]  A. Parekh,et al.  Mitochondrial regulation of store-operated CRAC channels. , 2008, Cell calcium.

[2]  G. Rutter,et al.  ATP depletion inhibits Ca2+ release, influx and extrusion in pancreatic acinar cells but not pathological Ca2+ responses induced by bile , 2008, Pflügers Archiv - European Journal of Physiology.

[3]  O. Petersen,et al.  Polarized calcium signaling in exocrine gland cells. , 2008, Annual review of physiology.

[4]  C. Hoogenraad,et al.  STIM1 Is a MT-Plus-End-Tracking Protein Involved in Remodeling of the ER , 2008, Current Biology.

[5]  Onn Brandman,et al.  STIM2 Is a Feedback Regulator that Stabilizes Basal Cytosolic and Endoplasmic Reticulum Ca2+ Levels , 2007, Cell.

[6]  J. Putney,et al.  Role of the microtubule cytoskeleton in the function of the store-operated Ca2+ channel activator STIM1 , 2007, Journal of Cell Science.

[7]  L. Hunyady,et al.  Visualization and Manipulation of Plasma Membrane-Endoplasmic Reticulum Contact Sites Indicates the Presence of Additional Molecular Components within the STIM1-Orai1 Complex*♦ , 2007, Journal of Biological Chemistry.

[8]  J. Putney Recent breakthroughs in the molecular mechanism of capacitative calcium entry (with thoughts on how we got here). , 2007, Cell calcium.

[9]  A. Parekh,et al.  Regulation of Store-Operated Calcium Channels by the Intermediary Metabolite Pyruvic Acid , 2007, Current Biology.

[10]  Joseph P. Yuan,et al.  STIM1 heteromultimerizes TRPC channels to determine their function as store-operated channels , 2007, Nature Cell Biology.

[11]  Tobias Meyer,et al.  Live-cell imaging reveals sequential oligomerization and local plasma membrane targeting of stromal interaction molecule 1 after Ca2+ store depletion , 2007, Proceedings of the National Academy of Sciences.

[12]  J. García-Sancho,et al.  Bioluminescence imaging of mitochondrial Ca2+ dynamics in soma and neurites of individual adult mouse sympathetic neurons , 2007, The Journal of physiology.

[13]  R. Tsien,et al.  A hexahistidine-Zn2+-dye label reveals STIM1 surface exposure , 2007, Proceedings of the National Academy of Sciences.

[14]  J. Cambier,et al.  Faculty Opinions recommendation of PI(3,4,5)P3 and PI(4,5)P2 lipids target proteins with polybasic clusters to the plasma membrane. , 2006 .

[15]  P. Várnai,et al.  Rapidly inducible changes in phosphatidylinositol 4,5-bisphosphate levels influence multiple regulatory functions of the lipid in intact living cells , 2006, The Journal of cell biology.

[16]  J. García-Sancho,et al.  Calcium microdomains in mitochondria and nucleus. , 2006, Cell calcium.

[17]  Y. Gwack,et al.  Orai1 is an essential pore subunit of the CRAC channel , 2006, Nature.

[18]  JoAnn Buchanan,et al.  The elementary unit of store-operated Ca2+ entry: local activation of CRAC channels by STIM1 at ER–plasma membrane junctions , 2006, The Journal of cell biology.

[19]  JoAnn Buchanan,et al.  Ca2+ store depletion causes STIM1 to accumulate in ER regions closely associated with the plasma membrane , 2006, The Journal of cell biology.

[20]  X. Zhang,et al.  Genome-wide RNAi screen of Ca(2+) influx identifies genes that regulate Ca(2+) release-activated Ca(2+) channel activity. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[21]  J. Kinet,et al.  CRACM1 Is a Plasma Membrane Protein Essential for Store-Operated Ca2+ Entry , 2006, Science.

[22]  Bogdan Tanasa,et al.  A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function , 2006, Nature.

[23]  B. Nilius,et al.  TRP channels: an overview. , 2005, Cell calcium.

[24]  Tobias Meyer,et al.  STIM Is a Ca2+ Sensor Essential for Ca2+-Store-Depletion-Triggered Ca2+ Influx , 2005, Current Biology.

[25]  S. Wagner,et al.  STIM1, an essential and conserved component of store-operated Ca2+ channel function , 2005, The Journal of cell biology.

[26]  J. Putney,et al.  Store-operated calcium channels. , 2005, Physiological reviews.

[27]  M. Frieden,et al.  The Role of Mitochondria for Ca2+ Refilling of the Endoplasmic Reticulum* , 2005, Journal of Biological Chemistry.

[28]  Amy E Palmer,et al.  Bcl-2-mediated alterations in endoplasmic reticulum Ca2+ analyzed with an improved genetically encoded fluorescent sensor. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[29]  Alan Morgan,et al.  Secretory granule exocytosis. , 2003, Physiological reviews.

[30]  A. Parekh,et al.  Store‐operated Ca2+ entry depends on mitochondrial Ca2+ uptake , 2002, The EMBO journal.

[31]  Philip Smith,et al.  Identification and characterization of the STIM (stromal interaction molecule) gene family: coding for a novel class of transmembrane proteins. , 2001, The Biochemical journal.

[32]  J. Putney,et al.  Role of the Phospholipase C-Inositol 1,4,5-Trisphosphate Pathway in Calcium Release-activated Calcium Current and Capacitative Calcium Entry* , 2001, The Journal of Biological Chemistry.

[33]  M. Ashby,et al.  Perinuclear, perigranular and sub‐plasmalemmal mitochondria have distinct functions in the regulation of cellular calcium transport , 2001, The EMBO journal.

[34]  T. Pozzan,et al.  Capacitative Ca2+ Entry Is Closely Linked to the Filling State of Internal Ca2+ Stores: A Study Using Simultaneous Measurements of ICRAC and Intraluminal [Ca2+] , 1998, The Journal of cell biology.

[35]  C. Croce,et al.  GOK: a gene at 11p15 involved in rhabdomyosarcoma and rhabdoid tumor development. , 1997, Cancer research.

[36]  R. Penner,et al.  Store depletion and calcium influx. , 1997, Physiological reviews.

[37]  M. Hoth,et al.  Mitochondrial Regulation of Store-operated Calcium Signaling in T Lymphocytes , 1997, The Journal of cell biology.

[38]  C. Begley,et al.  Molecular cloning of a novel human gene (D11S4896E) at chromosomal region 11p15.5. , 1996, Genomics.

[39]  K. Oritani,et al.  Identification of stromal cell products that interact with pre-B cells , 1996, The Journal of cell biology.

[40]  M. Berridge,et al.  Capacitative calcium entry. , 1995, The Biochemical journal.

[41]  J. Putney,et al.  Role of cyclic GMP in the control of capacitative Ca2+ entry in rat pancreatic acinar cells. , 1995, The Biochemical journal.

[42]  I. Marriott,et al.  ATP depletion inhibits capacitative Ca2+ entry in rat thymic lymphocytes. , 1995, The American journal of physiology.

[43]  K. Catt,et al.  A wortmannin-sensitive phosphatidylinositol 4-kinase that regulates hormone-sensitive pools of inositolphospholipids. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[44]  R. Lewis,et al.  Rapid inactivation of depletion-activated calcium current (ICRAC) due to local calcium feedback , 1995, The Journal of general physiology.

[45]  T. Pozzan,et al.  Modulation of Ca2+ influx dependent on store depletion by intracellular adenine-guanine nucleotide levels. , 1994, The Journal of biological chemistry.

[46]  R. Penner,et al.  Depletion of intracellular calcium stores activates a calcium current in mast cells , 1992, Nature.

[47]  R. Irvine ‘Quanta’ Ca2+ release and the control of Ca2+ entry by inositol phosphates ‐ a possible mechanism , 1990, FEBS letters.

[48]  J. Putney,et al.  A model for receptor-regulated calcium entry. , 1986, Cell calcium.

[49]  Tobias Meyer,et al.  STIM Is a Ca 2+ Sensor Essential for Ca 2+ -Store-Depletion-Triggered Ca 2+ Influx , 2005 .

[50]  Zahid Moneer,et al.  Regulation of capacitative and non-capacitative Ca2+ entry in A7r5 vascular smooth muscle cells. , 2004, Biological research.

[51]  T. Pozzan,et al.  Capacitative Ca 2 1 Entry Is Closely Linked to the Filling State of Internal Ca 2 1 Stores : A Study Using Simultaneous Measurements of I CRAC and Intraluminal [ Ca 2 1 ] , 1998 .