Sociohydrological models are increasingly used in flood risk analysis to reveal and understand the temporal dynamics in coupled human-flood systems. While most sociohydrological flood risk models are stylized and describe hypothetical human-flood systems, very few recent case studies employ empirical data to investigate real world systems. The mathematical representation of flooding processes in these models is often simplistic and does not reflect the current state of knowledge. This is due to the intricacy of human-flood interactions and the lack of sufficient and suitable historical data.