Distribution Theory and Simulations for Tests of Outliers in Regression

This article provides distributional results for testing multiple outliers in regression. Because direct simulation of each combination of number of observations and number of parameters is too time consuming, three straightforward methods using truncated simple samples are described for approximating the pointwise distribution of the test statistic. Scaling factors are found to adjust for the number of parameters. The same simulations also provide a powerful method of calibrating pointwise inferences for simultaneous tests for an unknown number of outliers. Analysis of data on fidelity cards reveals an unexpected group of outliers.

[1]  Lawrence M. Seiford,et al.  Recent developments in dea : the mathematical programming approach to frontier analysis , 1990 .

[2]  Mia Hubert,et al.  Recent developments in PROGRESS , 1997 .

[3]  G. Box An analysis of transformations (with discussion) , 1964 .

[4]  Anthony C. Atkinson,et al.  Tests in the fan plot for robust, diagnostic transformations in regression , 2002 .

[5]  Peter J. Rousseeuw,et al.  Robust regression and outlier detection , 1987 .

[6]  Shizuhiko Nishisato,et al.  Elements of Dual Scaling: An Introduction To Practical Data Analysis , 1993 .

[7]  A. Buja,et al.  Calibration for Simultaneity : ( Re ) Sampling Methods for Simultaneous Inference with Applications to Function Estimation and Functional Data , 2022 .

[8]  D. Hawkins Discussion of "Outlier...s" , 1983 .

[9]  M. Csorgo Quantile processes with statistical applications , 1987 .

[10]  D. Montgomery,et al.  A comparative analysis of multiple outlier detection procedures in the linear regression model , 2001 .

[11]  M. Kendall,et al.  Kendall's advanced theory of statistics , 1995 .

[12]  J. Simonoff,et al.  Procedures for the Identification of Multiple Outliers in Linear Models , 1993 .

[13]  A. Hadi,et al.  BACON: blocked adaptive computationally efficient outlier nominators , 2000 .

[14]  D. Cox,et al.  An Analysis of Transformations , 1964 .

[15]  Viadimir E. Bening Asymptotic Theory of Testing Statistical Hypotheses: Efficient Statistics, Optimality, Power Loss and Deficiency , 2000 .

[16]  V. Barnett [Outlier..........s]: Discussion , 1983 .

[17]  Anthony C. Atkinson,et al.  Exploring Multivariate Data with the Forward Search , 2004 .

[18]  A. W. Kemp,et al.  Kendall's Advanced Theory of Statistics. , 1994 .

[19]  A. Atkinson Fast Very Robust Methods for the Detection of Multiple Outliers , 1994 .

[20]  F. E. Grubbs Sample Criteria for Testing Outlying Observations , 1950 .

[21]  P. Rousseeuw Least Median of Squares Regression , 1984 .

[22]  Anthony C. Atkinson,et al.  Robust Diagnostic Regression Analysis , 2000 .

[23]  S. Weisberg,et al.  Residuals and Influence in Regression , 1982 .

[24]  S. Weisberg Plots, transformations, and regression , 1985 .

[25]  Jim Freeman,et al.  Outliers in Statistical Data (3rd edition) , 1995 .