Plasticity of Animal Genome Architecture Unmasked by Rapid Evolution of a Pelagic Tunicate

Ocean Dweller Sequenced The Tunicates, which include the solitary free-swimming larvaceans that are a major pelagic component of our oceans, are a basal lineage of the chordates. In order to investigate the major evolutionary transition represented by these organisms, Denoeud et al. (p. 1381, published online 18 November) sequenced the genome of Oikopleura dioica, a chordate placed by phylogeny between vertebrates and amphioxus. Surprisingly, the genome showed little conservation in genome architecture when compared to the genomes of other animals. Furthermore, this highly compacted genome contained intron gains and losses, as well as species-specific gene duplications and losses that may be associated with development. Thus, contrary to popular belief, global similarities of genome architecture from sponges to humans are not essential for the preservation of ancestral morphologies. A metazoan genome departs from the organization that appears rigidly established in other animal phyla. Genomes of animals as different as sponges and humans show conservation of global architecture. Here we show that multiple genomic features including transposon diversity, developmental gene repertoire, physical gene order, and intron-exon organization are shattered in the tunicate Oikopleura, belonging to the sister group of vertebrates and retaining chordate morphology. Ancestral architecture of animal genomes can be deeply modified and may therefore be largely nonadaptive. This rapidly evolving animal lineage thus offers unique perspectives on the level of genome plasticity. It also illuminates issues as fundamental as the mechanisms of intron gain.

Frédéric Delsuc | Boris Lenhard | Hans Lehrach | Matthieu Muffato | Ismael Cross | Patrick Wincker | Jean-Marc Aury | Hervé Philippe | Hugues Roest Crollius | Eric Westhof | Eric M. Thompson | Coen Campsteijn | Stephen Butcher | Daniel Chourrout | J. Robert Manak | Alexandra Louis | Rein Aasland | Georgia Tsagkogeorga | Snehalata Huzurbazar | Julie Poulain | Simon Henriet | Atsuo Nishino | Corinne Da Silva | France Denoeud | John H. Postlethwait | Claire Jubin | Hiroki Nishida | Richard Reinhardt | David A. Liberles | Fekadu Yadetie | Corinne Da Silva | Pierre Boudinot | François Artiguenave | Cristian Cañestro | Jean-Nicolas Volff | J. Postlethwait | J. Poulain | J. Weissenbach | J. Volff | F. Denoeud | C. Jubin | E. Westhof | H. Lehrach | H. R. Crollius | O. Jaillon | P. Wincker | F. Artiguenave | R. Reinhardt | B. Lenhard | D. Liberles | C. Cañestro | Matthieu Muffato | F. Delsuc | H. Philippe | R. Kachouri-Lafond | J. Aury | Véronique Anthouard | H. Brinkmann | Benjamin Noel | H. Nishida | P. Boudinot | J. Manak | I. Cross | Betina M. Porcel | C. da Silva | R. Aasland | S. Butcher | G. Danks | E. Thompson | M. Adamski | D. Chourrout | G. Tsagkogeorga | S. Roy | S. Huzurbazar | A. Louis | A. Nishino | L. Du Pasquier | L. Pasquier | P. Chourrout | Sarabdeep Singh | Henner Brinkmann | Olivier Jaillon | Jean Weissenbach | F. Yadetie | C. Campsteijn | A. Konrad | Véronique Anthouard | Rym Kachouri-Lafond | L. Olsen | Louis Du Pasquier | Marcin Adamski | Scott W. Roy | Benjamin Noel | Sutada Mungpakdee | Marit Flo Jensen | Anke Konrad | Jana Mikhaleva | Lisbeth Charlotte Olsen | Jean-Marie Bouquet | Gemma Danks | Evelyne Huynh Cong | Helen Eikeseth-Otteraa | Matteo Ugolini | Pascal Chourrout | S. Henriet | Sarabdeep Singh | J. Bouquet | Jana Mikhaleva | Sutada Mungpakdee | Matteo Ugolini | M. F. Jensen | Helen Eikeseth-Otteraa | Claire Jubin | Alexandra Louis | Anke Konrad | Simon Henriet

[1]  M. Lynch,et al.  The structure and early evolution of recently arisen gene duplicates in the Caenorhabditis elegans genome. , 2003, Genetics.

[2]  A. Furano,et al.  Fruit flies and humans respond differently to retrotransposons. , 2002, Current opinion in genetics & development.

[3]  Nicholas H. Putnam,et al.  Sea Anemone Genome Reveals Ancestral Eumetazoan Gene Repertoire and Genomic Organization , 2007, Science.

[4]  E. Thompson,et al.  Culture optimization for the emergent zooplanktonic model organism Oikopleura dioica , 2009, Journal of plankton research.

[5]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[6]  J. Volff,et al.  Retroelement dynamics and a novel type of chordate retrovirus-like element in the miniature genome of the tunicate Oikopleura dioica. , 2004, Molecular biology and evolution.

[7]  Abraham E. Tucker,et al.  Extensive, Recent Intron Gains in Daphnia Populations , 2009, Science.

[8]  BMC Bioinformatics , 2005 .

[9]  V. Hu The Cell Cycle , 1994, GWUMC Department of Biochemistry Annual Spring Symposia.

[10]  Toralf Kirsten,et al.  Evolution of Spliceosomal snRNA Genes in Metazoan Animals , 2008, Journal of Molecular Evolution.

[11]  Hung D. Nguyen,et al.  Phase distribution of spliceosomal introns: implications for intron origin , 2006, BMC Evolutionary Biology.

[12]  Nicholas H. Putnam,et al.  The amphioxus genome and the evolution of the chordate karyotype , 2008, Nature.

[13]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[14]  M. Lynch,et al.  The Origins of Genome Complexity , 2003, Science.

[15]  M. Belfort,et al.  Retrohoming of a Bacterial Group II Intron Mobility via Complete Reverse Splicing, Independent of Homologous DNA Recombination , 1998, Cell.

[16]  M. Irimia,et al.  Mystery of intron gain: new data and new models. , 2009, Trends in genetics : TIG.

[17]  김삼묘,et al.  “Bioinformatics” 특집을 내면서 , 2000 .

[18]  Nicholas H. Putnam,et al.  The Trichoplax genome and the nature of placozoans , 2008, Nature.

[19]  E. Thompson,et al.  Diverse genes expressed in distinct regions of the trunk epithelium define a monolayer cellular template for construction of the oikopleurid house. , 2001, Developmental biology.

[20]  Todd H. Oakley,et al.  The Amphimedon queenslandica genome and the evolution of animal complexity , 2010, Nature.

[21]  M. Lynch The origins of eukaryotic gene structure. , 2006, Molecular biology and evolution.

[22]  N. Satoh,et al.  Genomewide surveys of developmentally relevant genes in Ciona intestinalis , 2003, Development Genes and Evolution.

[23]  J. Ashby References and Notes , 1999 .

[24]  Walter Gilbert,et al.  The evolution of spliceosomal introns: patterns, puzzles and progress , 2006, Nature Reviews Genetics.

[25]  F. Delsuc,et al.  Tunicates and not cephalochordates are the closest living relatives of vertebrates , 2006, Nature.

[26]  J. Weissenbach,et al.  Remodelling of the homeobox gene complement in the tunicate Oikopleura dioica , 2005, Current Biology.

[27]  Thomas Blumenthal,et al.  Both subunits of U2AF recognize the 3′ splice site in Caenorhabditis elegans , 1999, Nature.

[28]  M. Lynch The frailty of adaptive hypotheses for the origins of organismal complexity , 2007, Proceedings of the National Academy of Sciences.

[29]  Tobias Mourier,et al.  Eukaryotic Intron Loss , 2003, Science.

[30]  Timothy Hughes,et al.  The Pattern of Evolution of Smaller-Scale Gene Duplicates in Mammalian Genomes is More Consistent with Neo- than Subfunctionalisation , 2007, Journal of Molecular Evolution.

[31]  Ronald E. Bontrop,et al.  Immunogenetics , 2005, Genes and Immunity.

[32]  Klaudia Walter,et al.  Highly Conserved Non-Coding Sequences Are Associated with Vertebrate Development , 2004, PLoS biology.

[33]  C. Glover,et al.  Gene expression profiling for hematopoietic cell culture , 2006 .