Optimal designs for both model discrimination and parameter estimation

The KL-optimality criterion has been recently proposed to discriminate between any two statistical models. However, designs which are optimal for model discrimination may be inadequate for parameter estimation. In this paper, the DKL-optimality criterion is proposed which is useful for the dual problem of model discrimination and parameter estimation. An equivalence theorem and a stopping rule for the corresponding iterative algorithms are provided. A pharmacokinetics application and a bioassay example are given to show the good properties of a DKL-optimum design.

[1]  Anthony C. Atkinson,et al.  DT-optimum designs for model discrimination and parameter estimation , 2008 .

[2]  Weng Kee Wong,et al.  Design issues for the Michaelis-Menten model. , 2002, Journal of theoretical biology.

[3]  G Dunn,et al.  'Optimal' designs for drug, neurotransmitter and hormone receptor assays. , 1988, Statistics in medicine.

[4]  H. Dette,et al.  Efficient experimental designs for sigmoidal growth models , 2005 .

[5]  Holger Dette,et al.  Robust and efficient design of experiments for the Monod model. , 2005, Journal of theoretical biology.

[6]  Jaromir Antoch,et al.  COMPSTAT 2004 — Proceedings in Computational Statistics , 2004 .

[7]  Chiara Tommasi,et al.  Optimal Designs for Discriminating among Several Non-Normal Models , 2007 .

[8]  David M. Borth,et al.  A Total Entropy Criterion for the Dual Problem of Model Discrimination and Parameter Estimation , 1975 .

[9]  P. Gottschalk,et al.  The five-parameter logistic: a characterization and comparison with the four-parameter logistic. , 2005, Analytical biochemistry.

[10]  Holger Dette,et al.  Optimal discrimination designs , 2009, 0908.1912.

[11]  John Eccleston,et al.  On optimal design for discrimination and estimation , 2004 .

[12]  J. López–Fidalgo,et al.  An optimal experimental design criterion for discriminating between non‐normal models , 2007 .

[13]  Holger Dette,et al.  Design of Experiments for the Monod Model - Robust and Efficient Designs , 2004 .

[14]  Holger Dette,et al.  Robust designs for polynomial regression by maximizing a minimum of D- and D1-efficiencies , 2001 .

[15]  Holger Dette,et al.  E-optimal designs for the Michaelis–Menten model , 1999 .

[16]  Holger Dette,et al.  Constrained D- and D1-optimal designs for polynomial regression , 2000 .

[17]  W. J. Hill,et al.  A Joint Design Criterion for the Dual Problem of Model Discrimination and Parameter Estimation , 1968 .

[18]  D. Wiens Robust discrimination designs , 2009 .

[19]  Atanu Biswas,et al.  An efficient design for model discrimination and parameter estimation in linear models , 2002 .

[20]  Anthony C. Atkinson,et al.  Optimum Experimental Designs , 1992 .

[21]  Optimal experimental design criterion for discriminating semiparametric models , 2008 .

[22]  W K Wong,et al.  Optimal Designs When the Variance Is A Function of the Mean , 1999, Biometrics.

[23]  A. Atkinson,et al.  The design of experiments for discriminating between two rival models , 1975 .

[24]  Friedrich Pukelsheim,et al.  E-Optimal Designs for Polynomial Regression , 1993 .

[25]  Mei-Mei Zen,et al.  Criterion-robust optimal designs for model discrimination and parameter estimation: Multivariate polynomial regression case , 2004 .

[26]  Holger Dette,et al.  Optimal Design for Goodness-of-Fit of the Michaelis–Menten Enzyme Kinetic Function , 2005 .

[27]  Mei-Mei Zen,et al.  Criterion-robust optimal designs for model discrimination and parameter estimation in Fourier regression models , 2004 .

[28]  Holger Dette,et al.  On a mixture of the D- and D1-optimality criterion in polynomial regression , 1993 .

[29]  Jesús López Fidalgo,et al.  Moda 8 - Advances in Model-Oriented Design and Analysis , 2007 .

[30]  A comparison of sequential and non-sequential designs for discrimination between nested regression models , 2004 .

[31]  Susan M. Lewis,et al.  Design selection criteria for discrimination/estimation for nested models and a binomial response , 2008 .

[32]  Andrej Pázman,et al.  Foundations of Optimum Experimental Design , 1986 .