Fluoreszenzmikroskopie unterhalb der optischen Auflösungsgrenze mit konventionellen Fluoreszenzsonden

[1]  M. Sauer Reversible molecular photoswitches: a key technology for nanoscience and fluorescence imaging. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[2]  Stefan W. Hell,et al.  Fundamental improvement of resolution with a 4Pi-confocal fluorescence microscope using two-photon excitation , 1992 .

[3]  S. Ram,et al.  Beyond Rayleigh's criterion: a resolution measure with application to single-molecule microscopy. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[4]  P. So,et al.  Two-dimensional standing wave total internal reflection fluorescence microscopy: superresolution imaging of single molecular and biological specimens. , 2007, Biophysical journal.

[5]  Mark Bates,et al.  Short-range spectroscopic ruler based on a single-molecule optical switch. , 2005, Physical review letters.

[6]  N. Johnsson,et al.  Chemical tools for biomolecular imaging. , 2007, ACS chemical biology.

[7]  M. Heilemann,et al.  Carbocyanine dyes as efficient reversible single-molecule optical switch. , 2005, Journal of the American Chemical Society.

[8]  A. Egner,et al.  Two-color far-field fluorescence nanoscopy based on photoswitchable emitters , 2007 .

[9]  Michael J Rust,et al.  Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) , 2006, Nature Methods.

[10]  Christian Eggeling,et al.  Fluorescence Nanoscopy in Whole Cells by Asynchronous Localization of Photoswitching Emitters , 2007, Biophysical journal.

[11]  Agard,et al.  I5M: 3D widefield light microscopy with better than 100 nm axial resolution , 1999, Journal of microscopy.

[12]  Mark Bates,et al.  Three-Dimensional Super-Resolution Imaging by Stochastic Optical Reconstruction Microscopy , 2008, Science.

[13]  J. Vandekerckhove,et al.  At least six different actins are expressed in a higher mammal: an analysis based on the amino acid sequence of the amino-terminal tryptic peptide. , 1978, Journal of molecular biology.

[14]  S. Hell,et al.  Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. , 1994, Optics letters.

[15]  R. Heintzmann,et al.  Superresolution by localization of quantum dots using blinking statistics. , 2005, Optics express.

[16]  Daniel L. Farkas,et al.  Enhancement of axial resolution in fluorescence microscopy by standing-wave excitation , 1993, Nature.

[17]  Paul R. Selvin,et al.  Myosin V Walks Hand-Over-Hand: Single Fluorophore Imaging with 1.5-nm Localization , 2003, Science.

[18]  S. Hell,et al.  STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis , 2006, Nature.

[19]  K Weber,et al.  Cytoplasmic microtubular images in glutaraldehyde-fixed tissue culture cells by electron microscopy and by immunofluorescence microscopy. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[20]  S. Hell Toward fluorescence nanoscopy , 2003, Nature Biotechnology.

[21]  R. Hochstrasser,et al.  Wide-field subdiffraction imaging by accumulated binding of diffusing probes , 2006, Proceedings of the National Academy of Sciences.

[22]  Mark Bates,et al.  Multicolor Super-Resolution Imaging with Photo-Switchable Fluorescent Probes , 2007, Science.

[23]  Peter Dedecker,et al.  A stroboscopic approach for fast photoactivation-localization microscopy with Dronpa mutants. , 2007, Journal of the American Chemical Society.

[24]  S. Hell Far-Field Optical Nanoscopy , 2007, Science.

[25]  M. Gustafsson Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[26]  J. Lippincott-Schwartz,et al.  Imaging Intracellular Fluorescent Proteins at Nanometer Resolution , 2006, Science.

[27]  W. Webb,et al.  Precise nanometer localization analysis for individual fluorescent probes. , 2002, Biophysical journal.

[28]  Stefan W. Hell,et al.  Supporting Online Material Materials and Methods Figs. S1 to S9 Tables S1 and S2 References Video-rate Far-field Optical Nanoscopy Dissects Synaptic Vesicle Movement , 2022 .

[29]  Michael D. Mason,et al.  Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. , 2006, Biophysical journal.