Electrocatalytic properties of Fe–R (R = rare earth metal) crystalline alloys as hydrogen electrodes in alkaline water electrolysis

[1]  F. Rosalbino,et al.  Partial phase diagrams of the Dy–Pt and Ho–Pt systems and electrocatalytic behaviour of the DyPt and HoPt phases , 2005 .

[2]  F. Rosalbino,et al.  Hydrogen evolution reaction on Ni-Re (RE = rare earth) crystalline alloys , 2003 .

[3]  C. F. Oliveira,et al.  The hydrogen evolution reaction on codeposited Ni–hydrogen storage intermetallic particles in alkaline medium , 2000 .

[4]  S. Machado,et al.  STUDIES OF THE HYDROGEN EVOLUTION REACTION ON SMOOTH CO AND ELECTRODEPOSITED NI-CO ULTRAMICROELECTRODES , 1999 .

[5]  E. Gonzalez,et al.  A Study of the Hydrogen Evolution Reaction on a Ni/NiFeS Electrodeposited Coating , 1997 .

[6]  Pierre Villars,et al.  Handbook of Ternary Alloy Phase Diagrams , 1995 .

[7]  B. Conway,et al.  On the origins of cathode hyperpolarization effects in electrolytic fluorine production from KF · 2HF melts , 1994 .

[8]  F. Will,et al.  Reproducible tritium generation in electrochemical cells employing palladium cathodes with high deuterium loading , 1993 .

[9]  B. Conway,et al.  Thermodynamic and electrode kinetic factors in cathodic hydrogen sorption into metals and its relationship to hydrogen adsorption and poisoning , 1993 .

[10]  D. Piron,et al.  Composite-coating electrodes for hydrogen evolution reaction , 1993 .

[11]  A. Lasia,et al.  Hydrogen Evolution Reaction on Nickel‐Molybdenum Powder Electrodes , 1992 .

[12]  B. Conway,et al.  Problems in the determination of adsorption behaviour of intermediates in faradaic reactions: Distinction between double layer and adsorption capacitance of electrocatalysts determined from fast potential relaxation transients , 1992 .

[13]  A. Lasia,et al.  Kinetics of hydrogen evolution on Ni-Al alloy electrodes , 1992 .

[14]  A. Lasia,et al.  Study of the Kinetics of Hydrogen Evolution Reaction on Nickel‐Zinc Alloy Electrodes , 1991 .

[15]  P. Ekdunge,et al.  Electrochemical Impedance Study on the Kinetics of Hydrogen Evolution at Amorphous Metals in Alkaline Solution , 1991 .

[16]  S. Srinivasan,et al.  Dispersion deposition of metal — Particle composites and the evaluation of dispersion deposited nickel — Lanthanum nickelate electrocatalyst for hydrogen evolution , 1991 .

[17]  A. Lasia,et al.  Kinetics of hydrogen evolution on nickel electrodes , 1990 .

[18]  A. Lasia,et al.  Study of the Kinetics of Hydrogen Evolution Reaction on Raney Nickel Composite‐Coated Electrode by AC Impedance Technique , 1990 .

[19]  J. C. Wang,et al.  Comments on a fractal model for blocking interfaces , 1989 .

[20]  K. Tennakone,et al.  Hydrogen from brine electrolysis: a new approach , 1989 .

[21]  P. Nagarkar,et al.  The effect of density of states, work function and exchange integral of polycrystalline and single crystal surfaces on the hydrogen evolution reaction , 1989 .

[22]  K. Jüttner,et al.  Characterization of the electrocatalytic properties of amorphous metals for oxygen and hydrogen evolution by impedance measurements , 1988 .

[23]  J. C. Wang,et al.  Impedance of a fractal electrolyte—electrode interface , 1988 .

[24]  J. H. Sluyters,et al.  An explanation of depressed semi-circular arcs in impedance plots for irreversible electrode reactions , 1988 .

[25]  B. Conway,et al.  Behavior of overpotential—deposited species in Faradaic reactions—II. ac Impedance measurements on H2 evolution kinetics at activated and unactivated Pt cathodes , 1987 .

[26]  B. Conway,et al.  Kinetic theory of the open-circuit potential decay method for evaluation of behaviour of adsorbed intermediates. Analysis for the case of the H2 evolution reaction , 1987 .

[27]  M. Jakšić Advances in electrocatalysis for hydrogen evolution in the light of the Brewer-Engel valence-bond theory☆ , 1987 .

[28]  U. Rammelt,et al.  The influence of surface roughness on the impedance data for iron electrodes in acid solutions , 1987 .

[29]  G. Kreysa,et al.  Electrocatalysis by amorphous metals of hydrogen and oxygen evolution in alkaline solution , 1986 .

[30]  Pierre Villars,et al.  Pearson's handbook of crystallographic data for intermetallic phases , 1985 .

[31]  T. Pajkossy,et al.  Fractal dimension and fractional power frequency-dependent impedance of blocking electrodes , 1985 .

[32]  M. Jakšić Electrocatalysis of hydrogen evolution in the light of the brewer—engel theory for bonding in metals and intermetallic phases , 1984 .

[33]  M. Sluyters-Rehbach,et al.  The analysis of electrode impedances complicated by the presence of a constant phase element , 1984 .

[34]  B. Tilak,et al.  Chemical, Electrochemical, and Technological Aspects of Sodium Chlorate Manufacture , 1984 .

[35]  B. Conway,et al.  Data collection and processing of open-circuit potential-decay measurements using a digital oscilloscope: Derivation of the H-capacitance behaviour of H2-evolving, Ni-based cathodes , 1984 .

[36]  J. Ross Macdonald,et al.  Applicability and power of complex nonlinear least squares for the analysis of impedance and admittance data , 1982 .

[37]  K. Yvon,et al.  LAZY PULVERIX, a computer program, for calculating X‐ray and neutron diffraction powder patterns , 1977 .

[38]  S. Trasatti Work function, electronegativity, and electrochemical behaviour of metals: III. Electrolytic hydrogen evolution in acid solutions , 1972 .

[39]  Brian E. Conway,et al.  Modern Aspects of Electrochemistry , 1974 .