Percolation thresholds for photonic quantum computing

[1]  Simon J. Devitt,et al.  A local and scalable lattice renormalization method for ballistic quantum computation , 2017, npj Quantum Information.

[2]  Mercedes Gimeno-Segovia,et al.  Fault-tolerant quantum computation with nondeterministic entangling gates , 2017, 1708.05627.

[3]  Mercedes Gimeno-Segovia,et al.  Physical-depth architectural requirements for generating universal photonic cluster states , 2017, 1706.07325.

[4]  Terry Rudolph,et al.  Why I am optimistic about the silicon-photonic route to quantum computing , 2016, 1607.08535.

[5]  Y. Don,et al.  Deterministic generation of a cluster state of entangled photons , 2016, Science.

[6]  Liang Jiang,et al.  New class of quantum error-correcting codes for a bosonic mode , 2016, 1602.00008.

[7]  Mercedes Gimeno-Segovia,et al.  Towards practical linear optical quantum computing , 2015 .

[8]  Gregory R. Steinbrecher,et al.  Quantum transport simulations in a programmable nanophotonic processor , 2015, Nature Photonics.

[9]  D. D. B. Rao,et al.  GENERATION OF ENTANGLED PHOTON STRINGS USING NV CENTERS IN DIAMOND , 2015, Symposium Latsis 2019 on Diamond Photonics - Physics, Technologies and Applications.

[10]  J. O'Brien,et al.  Universal linear optics , 2015, Science.

[11]  P. Shadbolt,et al.  From Three-Photon Greenberger-Horne-Zeilinger States to Ballistic Universal Quantum Computation. , 2014, Physical review letters.

[12]  Peter van Loock,et al.  Near-deterministic creation of universal cluster states with probabilistic Bell measurements and three-qubit resource states , 2014, 1410.3753.

[13]  Peter van Loock,et al.  3/4-Efficient Bell measurement with passive linear optics and unentangled ancillae. , 2014, Physical review letters.

[14]  Peter van Loock,et al.  Beating the one-half limit of ancilla-free linear optics Bell measurements. , 2013, Physical review letters.

[15]  A. Small,et al.  Percolation thresholds on three-dimensional lattices with three nearest neighbors , 2012, 1211.6531.

[16]  W. Grice Arbitrarily complete Bell-state measurement using only linear optical elements , 2011 .

[17]  Scott Aaronson,et al.  The computational complexity of linear optics , 2010, STOC '11.

[18]  Sean D Barrett,et al.  Fault tolerant quantum computation with very high threshold for loss errors. , 2010, Physical review letters.

[19]  T. Rudolph,et al.  Optically generated 2-dimensional photonic cluster state from coupled quantum dots , 2010, CLEO: 2011 - Laser Science to Photonic Applications.

[20]  Terry Rudolph,et al.  Proposal for pulsed on-demand sources of photonic cluster state strings. , 2009, Physical review letters.

[21]  J. Eisert,et al.  Percolation in quantum computation and communication , 2007, 0712.1836.

[22]  Steven T. Flammia,et al.  Phase transition of computational power in the resource states for one-way quantum computation , 2007, 0709.1729.

[23]  G. Milburn,et al.  Linear optical quantum computing with photonic qubits , 2005, quant-ph/0512071.

[24]  J. Eisert,et al.  Percolation, renormalization, and quantum computing with nondeterministic gates. , 2006, Physical review letters.

[25]  T. Rudolph,et al.  Loss tolerance in one-way quantum computation via counterfactual error correction. , 2005, Physical review letters.

[26]  T. Rudolph,et al.  Resource-efficient linear optical quantum computation. , 2004, Physical review letters.

[27]  M. Markus,et al.  Oscillations and turbulence induced by an activating agent in an active medium. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[29]  M. Newman,et al.  Fast Monte Carlo algorithm for site or bond percolation. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[31]  N. Lutkenhaus,et al.  Maximum efficiency of a linear-optical Bell-state analyzer , 2000, quant-ph/0007058.

[32]  S. V. D. Marck,et al.  An Investigation of Site-Bond Percolation on Many Lattices , 1999, cond-mat/9906078.

[33]  Jian-Wei Pan,et al.  Greenberger-Horne-Zeilinger-state analyzer , 1998 .

[34]  Weinfurter,et al.  Interferometric Bell-state analysis. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[35]  Reck,et al.  Experimental realization of any discrete unitary operator. , 1994, Physical review letters.

[36]  M. Sahimi,et al.  On Polya random walks, lattice Green functions, and the bond percolation threshold , 1983 .

[37]  J. M. Hammersley,et al.  Percolation , 1980, Advances in Applied Probability.

[38]  J. Hammersley A generalization of McDiarmid's theorem for mixed Bernoulli percolation , 1980, Mathematical Proceedings of the Cambridge Philosophical Society.

[39]  J. Hammersley,et al.  Percolation processes , 1957, Mathematical Proceedings of the Cambridge Philosophical Society.

[40]  M. Mézard,et al.  Journal of Statistical Mechanics: theory and experiment , 2019 .

[41]  S. Gagola A Moufang loop's commutant , 2011, Mathematical Proceedings of the Cambridge Philosophical Society.

[42]  Physical Review Letters 63 , 1989 .