Graphene: New bridge between condensed matter physics and quantum electrodynamics

Abstract Graphene is the first example of truly two-dimensional crystals—it is just one layer of carbon atoms. It turns out to be a gapless semiconductor with unique electronic properties resulting from the fact that charge carriers in graphene demonstrate charge-conjugation symmetry between electrons and holes and possess an internal degree of freedom similar to “chirality” for ultrarelativistic elementary particles. It provides an unexpected bridge between condensed matter physics and quantum electrodynamics (QED). In particular, the relativistic Zitterbewegung leads to the minimum conductivity of the order of conductance quantum e 2 / h in the limit of zero doping; the concept of Klein paradox (tunneling of relativistic particles) provides an essential insight into electron propagation through potential barriers; vacuum polarization around charge impurities is essential for understanding of high electron mobility in graphene; an index theorem explains the anomalous quantum Hall effect.

[1]  N. M. R. Peres,et al.  Electronic properties of disordered two-dimensional carbon , 2006 .

[2]  Self-consistent theory of polymerized membranes. , 1992, Physical review letters.

[3]  S. Adhikari Quantum scattering in two dimensions , 1986 .

[4]  J. Slonczewski,et al.  Band Structure of Graphite , 1958 .

[5]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[6]  H. Kroto,et al.  Symmetry, space, stars and C 60 * , 1997 .

[7]  Robust transport properties in graphene. , 2006, Physical review letters.

[8]  Y. Blanter,et al.  Shot noise in mesoscopic conductors , 1999, cond-mat/9910158.

[9]  W D Hamilton,et al.  Introduction to High Energy Physics , 1973 .

[10]  R. Bartram Qualitative methods in quantum theory , 1979, Proceedings of the IEEE.

[11]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[12]  G. Mikitik,et al.  Manifestation of Berry's Phase in Metal Physics , 1999 .

[13]  L. Peliti,et al.  Fluctuations in membranes with crystalline and hexatic order , 1987 .

[14]  Magnetic field driven metal insulator phase transition in planar systems , 2002, cond-mat/0202422.

[15]  F. Guinea,et al.  Edge and surface states in the quantum Hall effect in graphene , 2005, cond-mat/0509709.

[16]  Johan Nilsson,et al.  Electronic properties of graphene multilayers. , 2006, Physical review letters.

[17]  Jannik C. Meyer,et al.  The structure of suspended graphene sheets , 2007, Nature.

[18]  Steven G. Louie,et al.  Disorder, Pseudospins, and Backscattering in Carbon Nanotubes , 1999 .

[19]  T. Ando Screening Effect and Impurity Scattering in Monolayer Graphene(Condensed matter: electronic structure and electrical, magnetic, and optical properties) , 2006 .

[20]  G. V. Chester,et al.  Solid State Physics , 2000 .

[21]  Joachim Reinhardt,et al.  Quantum electrodynamics of strong fields , 1985 .

[22]  R. Yahalom,et al.  Physical origin of topological mass in 2 + 1 dimensions , 1986 .

[23]  Transport in bilayer graphene: Calculations within a self-consistent Born approximation , 2006, cond-mat/0606166.

[24]  Rafael A. Barrio,et al.  Models of disorder , 2000, Glass Physics and Chemistry.

[25]  Disorder effects in two-dimensional d-wave superconductors. , 1994, Physical review letters.

[26]  Lee,et al.  Localized states in a d-wave superconductor. , 1993 .

[27]  Nguyen Hong Shon,et al.  Quantum Transport in Two-Dimensional Graphite System , 1998 .

[28]  Non-Fermi liquid behavior of electrons in the half-filled honeycomb lattice (A renormalization group approach) , 1993, hep-th/9311105.

[29]  Fisher,et al.  Integer quantum Hall transition: An alternative approach and exact results. , 1994, Physical review. B, Condensed matter.

[30]  Geometrical perturbation of graphene electronic structure , 2000 .

[31]  Howard R. Reiss Quantum Electrodynamics of Strong Fields , 1986 .

[32]  V. Mostepanenko,et al.  Vacuum quantum effects in strong fields , 1994 .

[33]  M. Breese,et al.  Proton beam writing , 2007 .

[34]  Vladimir I. Fal'ko,et al.  Selective transmission of Dirac electrons and ballistic magnetoresistance of n − p junctions in graphene , 2006 .

[35]  Riichiro Saito,et al.  Berry's Phase and Absence of Back Scattering in Carbon Nanotubes. , 1998 .

[36]  O. Klein,et al.  Die Reflexion von Elektronen an einem Potentialsprung nach der relativistischen Dynamik von Dirac , 1929 .

[37]  M. I. Katsnelson,et al.  Chiral tunnelling and the Klein paradox in graphene , 2006 .

[38]  T. Fujiwara,et al.  Dirac operator zero-modes on a torus , 2005, hep-th/0506259.

[39]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[40]  Don N. Page Hawking radiation and black hole thermodynamics , 2005 .

[41]  Evgenii Mikhailovich Lifshitz,et al.  Relativistic quantum theory , 1971 .

[42]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[43]  Haldane,et al.  Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the "parity anomaly" , 1988, Physical review letters.

[44]  David R. Nelson,et al.  Statistical mechanics of membranes and surfaces , 2004 .

[45]  Nonlinear screening of charge impurities in graphene , 2006, cond-mat/0609026.

[46]  A. Calogeracos,et al.  Seventy years of the Klein paradox , 1999 .

[47]  P. Kim,et al.  Experimental observation of the quantum Hall effect and Berry's phase in graphene , 2005, Nature.

[48]  Alberto Cortijo,et al.  Electronic properties of curved graphene sheets , 2007 .

[49]  加来 道雄 Introduction to superstrings , 1988 .

[50]  S. Girvin,et al.  The Quantum Hall Effect , 1987 .

[51]  Vladimir I Fal'ko,et al.  Landau-level degeneracy and quantum Hall effect in a graphite bilayer. , 2006, Physical review letters.

[52]  F. Peeters,et al.  Confined states and direction-dependent transmission in graphene quantum wells , 2006, cond-mat/0606558.

[53]  François M. Peeters,et al.  From graphene to graphite : Electronic structure around the K point , 2006 .

[54]  E. Fradkin,et al.  Critical behavior of disordered degenerate semiconductors. II. Spectrum and transport properties in mean-field theory. , 1986, Physical review. B, Condensed matter.

[55]  E. Lifshitz,et al.  Relativistic quantum theory : Part 2 , 1971 .

[56]  M. I. Katsnelson,et al.  Quantum solid-state physics , 1989 .

[57]  Robert F. Curl,et al.  Dawn of the fullerenes: experiment and conjecture , 1997 .

[58]  L. Levitov,et al.  Spin-filtered edge states and quantum Hall effect in graphene. , 2006, Physical Review Letters.

[59]  P. Wallace The Band Theory of Graphite , 1947 .

[60]  J. W. McClure Diamagnetism of Graphite , 1956 .

[61]  V P Gusynin,et al.  Unconventional integer quantum Hall effect in graphene. , 2005, Physical review letters.

[62]  G. Semenoff,et al.  Condensed-Matter Simulation of a Three-Dimensional Anomaly , 1984 .

[63]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[64]  Bernard Howard Lavenda,et al.  Nonequilibrium Statistical Thermodynamics , 1985 .

[65]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[66]  M I Katsnelson,et al.  Strong suppression of weak localization in graphene. , 2006, Physical review letters.

[67]  Andre K. Geim,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[68]  E. Lieb Thomas-fermi and related theories of atoms and molecules , 1981 .

[69]  A. Geim,et al.  Unconventional quantum Hall effect and Berry’s phase of 2π in bilayer graphene , 2006, cond-mat/0602565.

[70]  T. M. Rice,et al.  Metal‐Insulator Transitions , 2003 .

[71]  M. I. Katsnelson Zitterbewegung, chirality, and minimal conductivity in graphene , 2006 .

[72]  Quantum Transport in Semiconductor Nanostructures , 2004, cond-mat/0412664.

[73]  D. Haar,et al.  Statistical Physics , 1971, Nature.

[74]  R. Pound,et al.  Apparent Weight of Photons , 1960 .

[75]  Magnetic oscillations in planar systems with the Dirac-like spectrum of quasiparticle excitations. II. Transport properties , 2004, cond-mat/0411381.

[76]  C. Beenakker,et al.  Ballistic transmission through a graphene bilayer , 2006, cond-mat/0609243.

[77]  L. Pastur,et al.  Introduction to the Theory of Disordered Systems , 1988 .

[78]  C. Beenakker,et al.  Sub-Poissonian shot noise in graphene. , 2006, Physical review letters.

[79]  A. Geim,et al.  Two-dimensional gas of massless Dirac fermions in graphene , 2005, Nature.

[80]  R. Newton Scattering theory of waves and particles , 1966 .

[81]  Kentaro Nomura,et al.  Quantum Hall ferromagnetism in graphene. , 2006, Physical review letters.