A Level Set Method for Anisotropic Geometric Diffusion in 3D Image Processing

A new morphological multiscale method in three-dimensional (3D) image processing is presented which combines the image processing methodology based on nonlinear diffusion equations and the theory of geometric evolution problems. Its aim is to smooth the level sets of a 3D image while simultaneously preserving geometric features such as edges and corners on the level sets. This is obtained by an anisotropic curvature evolution, where time serves as the multiscale parameter. Thereby the diffusion tensor depends on a regularized shape operator of the evolving level sets. As one suitable regularization, local L2 projection onto quadratic polynomials is considered. The method is compared to a related parametric surface approach, and a geometric interpretation of the evolution and its invariance properties is given. A spatial finite element discretization on hexahedral meshes and a semi-implicit, regularized backward Euler discretization in time are the building blocks of the easy-to-code algorithm. Different a...

[1]  Joachim Weickert,et al.  Anisotropic diffusion in image processing , 1996 .

[2]  Martin Rumpf,et al.  Anisotropic nonlinear diffusion in flow visualization , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[3]  Sigurd B. Angenent,et al.  Multiphase thermomechanics with interfacial structure 2. Evolution of an isothermal interface , 1989 .

[4]  G. Dziuk,et al.  An algorithm for evolutionary surfaces , 1990 .

[5]  Luc Van Gool,et al.  Enhancement of Planar Shape Through Optimization of Functionals for Curves , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Christoph Schnörr,et al.  A Study of a Convex Variational Diffusion Approach for Image Segmentation and Feature Extraction , 1998, Journal of Mathematical Imaging and Vision.

[7]  G. Bellettini,et al.  Anisotropic motion by mean curvature in the context of Finsler geometry , 1996 .

[8]  Gabriel Taubin,et al.  A signal processing approach to fair surface design , 1995, SIGGRAPH.

[9]  Martin Rumpf,et al.  An Adaptive Finite Element Method for Large Scale Image Processing , 1999, J. Vis. Commun. Image Represent..

[10]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid , 2012 .

[11]  Marko Subasic,et al.  Level Set Methods and Fast Marching Methods , 2003 .

[12]  Mark Meyer,et al.  Implicit fairing of irregular meshes using diffusion and curvature flow , 1999, SIGGRAPH.

[13]  K. Mikula,et al.  A coarsening finite element strategy in image selective smoothing , 1997 .

[14]  Martin Rumpf,et al.  Anisotropic geometric diffusion in surface processing , 2000 .

[15]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods , 1999 .

[16]  René A. Carmona,et al.  Adaptive smoothing respecting feature directions , 1998, IEEE Trans. Image Process..

[17]  Joachim Weickert,et al.  Theoretical Foundations of Anisotropic Diffusion in Image Processing , 1994, Theoretical Foundations of Computer Vision.

[18]  Gerhard Dziuk,et al.  A fully discrete numerical scheme for weighted mean curvature flow , 2002, Numerische Mathematik.

[19]  Guillermo Sapiro,et al.  Vector (self) snakes: a geometric framework for color, texture, and multiscale image segmentation , 1996, Proceedings of 3rd IEEE International Conference on Image Processing.

[20]  L. Evans,et al.  Motion of level sets by mean curvature IV , 1995 .

[21]  Gerhard Dziuk,et al.  DISCRETE ANISOTROPIC CURVATURE FLOW OF GRAPHS , 1999 .

[22]  Morton E. Gurtin,et al.  Multiphase thermomechanics with interfacial structure , 1990 .

[23]  Bernd Kawohl,et al.  Maximum and comparison principle for one-dimensional anisotropic diffusion , 1998 .

[24]  Yun-Gang Chen,et al.  Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations , 1989 .

[25]  P. Lions,et al.  Axioms and fundamental equations of image processing , 1993 .

[26]  Jean-Michel Morel,et al.  Variational methods in image segmentation , 1995 .

[27]  James A. Sethian,et al.  Image Processing: Flows under Min/Max Curvature and Mean Curvature , 1996, CVGIP Graph. Model. Image Process..

[28]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[29]  Martin Rumpf,et al.  An Adaptive Finite Element Method for Large Scale Image Processing , 2000, J. Vis. Commun. Image Represent..

[30]  A. Schmidt Computation of Three Dimensional Dendrites with Finite Elements , 1996 .

[31]  Karol Mikula,et al.  Evolution of Convex Plane Curves Describing Anisotropic Motions of Phase Interfaces , 1996, SIAM J. Sci. Comput..

[32]  P. Lions,et al.  Image selective smoothing and edge detection by nonlinear diffusion. II , 1992 .

[33]  Hans-Peter Seidel,et al.  Interactive multi-resolution modeling on arbitrary meshes , 1998, SIGGRAPH.

[34]  I. Chavel Eigenvalues in Riemannian geometry , 1984 .

[35]  Ron Kimmel Intrinsic Scale Space for Images on Surfaces: The Geodesic Curvature Flow , 1997, CVGIP Graph. Model. Image Process..

[36]  G. Huisken The volume preserving mean curvature flow. , 1987 .

[37]  J. Kacur,et al.  Solution of nonlinear diffusion appearing in image smoothing and edge detection , 1995 .