Multiwavelength Light-Responsive Au/B-TiO2 Janus Micromotors.

Conventional photocatalytic micromotors are limited to the use of specific wavelengths of light due to their narrow light absorption spectrum, which limits their effectiveness for applications in biomedicine and environmental remediation. We present a multiwavelength light-responsive Janus micromotor consisting of a black TiO2 microsphere asymmetrically coated with a thin Au layer. The black TiO2 microspheres exhibit absorption ranges between 300 and 800 nm. The Janus micromotors are propelled by light, both in H2O2 solutions and in pure H2O over a broad range of wavelengths including UV, blue, cyan, green, and red light. An analysis of the particles' motion shows that the motor speed decreases with increasing wavelength, which has not been previously realized. A significant increase in motor speed is observed when exploiting the entire visible light spectrum (>400 nm), suggesting a potential use of solar energy, which contains a great portion of visible light. Finally, stop-go motion is also demonstrated by controlling the visible light illumination, a necessary feature for the steerability of micro- and nanomachines.

[1]  John G. Gibbs,et al.  Self-Propelling Nanomotors in the Presence of Strong Brownian Forces , 2014, Nano letters.

[2]  B. Godley,et al.  Blue Light Induces Mitochondrial DNA Damage and Free Radical Production in Epithelial Cells* , 2005, Journal of Biological Chemistry.

[3]  Salvador Pané,et al.  Catalytic Locomotion of Core-Shell Nanowire Motors. , 2016, ACS nano.

[4]  M. Hori,et al.  Lethal effects of short-wavelength visible light on insects , 2014, Scientific Reports.

[5]  Hong Zhu,et al.  Geometry Design, Principles and Assembly of Micromotors , 2018, Micromachines.

[6]  L. D. Del Priore,et al.  Photosensitization of retinal pigment epithelium by protoporphyrin IX , 1998, Graefe's Archive for Clinical and Experimental Ophthalmology.

[7]  Walter F Paxton,et al.  Catalytic nanomotors: remote-controlled autonomous movement of striped metallic nanorods. , 2005, Angewandte Chemie.

[8]  Allen Pei,et al.  Highly Efficient Light-Driven TiO2-Au Janus Micromotors. , 2016, ACS nano.

[9]  J. Boyce,et al.  Terminal Decontamination of Patient Rooms Using an Automated Mobile UV Light Unit , 2011, Infection Control & Hospital Epidemiology.

[10]  David J. Pine,et al.  Living Crystals of Light-Activated Colloidal Surfers , 2013, Science.

[11]  Samuel Sanchez,et al.  Light-controlled propulsion of catalytic microengines. , 2011, Angewandte Chemie.

[12]  A. Fujishima,et al.  Studies of Surface Wettability Conversion on TiO2 Single-Crystal Surfaces , 1999 .

[13]  Yadong Yin,et al.  Composite titanium dioxide nanomaterials. , 2014, Chemical reviews.

[14]  Martin Pumera,et al.  Nanorobots: the ultimate wireless self-propelled sensing and actuating devices. , 2009, Chemistry, an Asian journal.

[15]  Wei Li,et al.  Single-Component TiO2 Tubular Microengines with Motion Controlled by Light-Induced Bubbles. , 2015, Small.

[16]  D. Saintillan,et al.  Geometrically designing the kinematic behavior of catalytic nanomotors. , 2011, Nano letters.

[17]  Joseph Wang,et al.  Carbon-nanotube-induced acceleration of catalytic nanomotors. , 2008, ACS nano.

[18]  M. Pumera Electrochemically powered self-propelled electrophoretic nanosubmarines. , 2010, Nanoscale.

[19]  J. Posner,et al.  Diffusive behaviors of circle-swimming motors. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  G. Han,et al.  Template-free synthesis of TiO2 microspheres with tunable particle size via a non-aqueous sol–gel process , 2014 .

[21]  Wenshao Yang,et al.  Strong photon energy dependence of the photocatalytic dissociation rate of methanol on TiO2(110). , 2013, Journal of the American Chemical Society.

[22]  Claudio Nicolini,et al.  An in-vitro study of the sterilization of titanium dental implants using low intensity UV-radiation. , 2005, Dental materials : official publication of the Academy of Dental Materials.

[23]  Yan-cheng Wang,et al.  Characterization of Oxygen Vacancy Associates within Hydrogenated TiO2: A Positron Annihilation Study , 2012 .

[24]  Xiaoyan Qin,et al.  Hydrogenated titania: synergy of surface modification and morphology improvement for enhanced photocatalytic activity. , 2012, Chemical communications.

[25]  A. Miyawaki,et al.  An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[26]  M. Tripathi,et al.  A review of TiO2 nanoparticles , 2011 .

[27]  K. Sumathy,et al.  A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production , 2007 .

[28]  D. Häder,et al.  UV-induced DNA damage and repair: a review , 2002, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[29]  Wei Li,et al.  Light‐Steered Isotropic Semiconductor Micromotors , 2017, Advanced materials.

[30]  S. Seregard,et al.  Photochemical damage of the retina. , 2006, Survey of ophthalmology.

[31]  Xin Xiao,et al.  Facile synthesis of nanostructured BiOI microspheres with high visible light-induced photocatalytic activity , 2010 .

[32]  Shin‐Hyun Kim,et al.  Light-activated self-propelled colloids , 2014, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[33]  J. Marshall,et al.  Age-related maculopathy and the impact of blue light hazard. , 2006, Acta ophthalmologica Scandinavica.

[34]  S. Pané,et al.  Highly Efficient Coaxial TiO2‐PtPd Tubular Nanomachines for Photocatalytic Water Purification with Multiple Locomotion Strategies , 2016 .

[35]  Trochoidal trajectories of self-propelled Janus particles in a diverging laser beam. , 2016, Soft matter.

[36]  Trevor Coward,et al.  An In-Vitro Study , 2016 .

[37]  M. El-Sayed,et al.  Change in Titania Structure from Amorphousness to Crystalline Increasing Photoinduced Electron-Transfer Rate in Dye-Titania System , 2007 .

[38]  Wei Gao,et al.  Visible-Light-Driven BiOI-Based Janus Micromotor in Pure Water. , 2017, Journal of the American Chemical Society.

[39]  David J. Pine,et al.  Artificial rheotaxis , 2015, Science Advances.

[40]  Chaolin Li,et al.  Rapid photocatalytic decolorization of methylene blue using high photon flux UV/TiO2/H2O2 process , 2013 .

[41]  Yan Li,et al.  Light-controlled bubble propulsion of amorphous TiO2/Au Janus micromotors , 2016 .

[42]  Samuel Sánchez,et al.  Motion Control of Urea-Powered Biocompatible Hollow Microcapsules. , 2016, ACS nano.

[43]  Kalayil Manian Manesh,et al.  Ultrafast catalytic alloy nanomotors. , 2008, Angewandte Chemie.

[44]  Lei Liu,et al.  Black titanium dioxide (TiO2) nanomaterials. , 2015, Chemical Society reviews.

[45]  B. Epe,et al.  Wavelength dependence of oxidative DNA damage induced by UV and visible light. , 1997, Carcinogenesis.

[46]  Zhonghua Zhang,et al.  Mesoporous hydrogenated TiO2 microspheres for high rate capability lithium ion batteries , 2013 .

[47]  Leilei Xu,et al.  Light-controlled propulsion, aggregation and separation of water-fuelled TiO2/Pt Janus submicromotors and their "on-the-fly" photocatalytic activities. , 2016, Nanoscale.

[48]  T. Peng,et al.  Mitochondrial Reactive Oxygen Species Generation and Calcium Increase Induced by Visible Light in Astrocytes , 2004, Annals of the New York Academy of Sciences.

[49]  Longqiu Li,et al.  Visible-light controlled catalytic Cu2O-Au micromotors. , 2017, Nanoscale.

[50]  X. Michalet Mean square displacement analysis of single-particle trajectories with localization error: Brownian motion in an isotropic medium. , 2010 .

[51]  Xuemin Du,et al.  Light-Powered Micro/Nanomotors , 2018, Micromachines.

[52]  J. Posner,et al.  Electrokinetic locomotion due to reaction-induced charge auto-electrophoresis , 2010, Journal of Fluid Mechanics.

[53]  T. Mallouk,et al.  Bipolar electrochemical mechanism for the propulsion of catalytic nanomotors in hydrogen peroxide solutions. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[54]  Samuel Sánchez,et al.  Topographical pathways guide chemical microswimmers , 2016, Nature Communications.

[55]  Wei Gao,et al.  Light-Driven Au-WO3@C Janus Micromotors for Rapid Photodegradation of Dye Pollutants. , 2017, ACS applied materials & interfaces.

[56]  M. Pommepuy,et al.  Visible light damage to Escherichia coli in seawater: oxidative stress hypothesis. , 1994, The Journal of applied bacteriology.

[57]  Jizhuang Wang,et al.  Programmable artificial phototactic microswimmer. , 2016, Nature nanotechnology.

[58]  Ion Tiginyanu,et al.  Light-Induced Motion of Microengines Based on Microarrays of TiO2 Nanotubes. , 2016, Small.

[59]  Stefano Sacanna,et al.  Photoactivated colloidal dockers for cargo transportation. , 2013, Journal of the American Chemical Society.

[60]  T. Sarna,et al.  Light-induced Damage to the Retina: Role of Rhodopsin Chromophore Revisited , 2005, Photochemistry and photobiology.

[61]  Joseph Wang,et al.  Motion control at the nanoscale. , 2010, Small.

[62]  Daniela A Wilson,et al.  A Supramolecular Approach to Nanoscale Motion: Polymersome-Based Self-Propelled Nanomotors , 2018, Accounts of chemical research.

[63]  Samuel Sánchez,et al.  Chemically powered micro- and nanomotors. , 2015, Angewandte Chemie.