Monte Carlo Simulation Design for Evaluating Normal-Based Control Chart Properties

The advent of more complicated control charting schemes has necessitated the use of Monte Carlo simulation (MCS) methods. Unfortunately, few sources exist to study effective design and validation of MCS methods related to control charting. This paper describes the design, issues, considerations and limitations for conducting normal-based control chart MCS studies, including choice of random number generator, simulation size requirements, and accuracy/error in simulation estimation. This paper also describes two design strategies for MCS for control chart evaluations and provides the programming code. As a result, this paper hopes to establish de facto MCS schemes aimed at guiding researchers and practitioners in validation and control-chart evaluation MCS design.

[1]  Wolfgang Schmid,et al.  Statistical Process Control and its Application in Finance , 1998 .

[2]  John N. Dyer,et al.  A Simulation Study Of The Impact Of Forecast Recovery For Control Charts Applied To ARMA Processes , 2002 .

[3]  A. A. Kalgonda Exponentially Weighted Moving Average Control Chart , 2013 .

[4]  Leo Knüsel On the reliability of Microsoft Excel XP for statistical purposes , 2002 .

[5]  Howard W. Elkinton,et al.  Economic control of quality of manufactured product: by W. A. Shewhart, Ph.D., Member of the Technical Staff, Bell Telephone Laboratories, Inc., 501 pages, tables, diagrams, 8vo. New York, D. Van Nostrand Company, Inc., 1931. Price $6.50 , 1932 .

[6]  Statistical Methods for Quality Improvement, 2nd Ed. , 2000 .

[7]  Christian P. Robert,et al.  Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.

[8]  J. Daudin,et al.  Double Sampling Charts , 1992 .

[9]  M. Fu,et al.  Efficient Design and Sensitivity Analysis of Control Charts Using Monte Carlo Simulation , 1999 .

[10]  Thomas P. Ryan,et al.  Statistical methods for quality improvement , 1989 .

[11]  Thorsten Gerber,et al.  Handbook Of Mathematical Functions , 2016 .

[12]  G. Marsaglia,et al.  The Ziggurat Method for Generating Random Variables , 2000 .

[13]  John Marsaglia,et al.  Rapid evaluation of the inverse of the normal distribution function , 1994 .

[14]  Joachim H. Ahrens,et al.  Efficient table-free sampling methods for the exponential, Cauchy, and normal distributions , 1988, CACM.

[15]  W. A. Shewhart,et al.  Statistical method from the viewpoint of quality control , 1939 .

[16]  Donald J. Wheeler,et al.  Understanding Statistical Process Control , 1986 .

[17]  E. S. Page CONTINUOUS INSPECTION SCHEMES , 1954 .

[18]  S. Stigler Studies in the History of Probability and Statistics. XXXII Laplace, Fisher, and the discovery of the concept of sufficiency , 1973 .

[19]  Gemai Chen,et al.  THE MEAN AND STANDARD DEVIATION OF THE RUN LENGTH DISTRIBUTION OF X̄ CHARTS WHEN CONTROL LIMITS ARE ESTIMATED Gemai Chen , 2003 .

[20]  James M. Lucas,et al.  Exponentially weighted moving average control schemes: Properties and enhancements , 1990 .

[21]  Benjamin M. Adams,et al.  Combined Control Charts for Forecast-Based Monitoring Schemes , 1996 .

[22]  Stephen M. Stigler,et al.  Studies in the history of probability and statistics, L: Karl Pearson and the Rule of Three , 2012 .

[23]  S. W. Roberts,et al.  Control Chart Tests Based on Geometric Moving Averages , 2000, Technometrics.

[24]  Ronald J. M. M. Does,et al.  Statistical process control in industry , 1998 .

[25]  B. D. McCullough,et al.  On the accuracy of statistical procedures in Microsoft Excel 2003 , 1999 .

[26]  J. Stuart Hunter,et al.  The exponentially weighted moving average , 1986 .

[27]  I. D. Hill,et al.  An Efficient and Portable Pseudo‐Random Number Generator , 1982 .

[28]  David A. Heiser,et al.  On the accuracy of statistical procedures in Microsoft Excel 2007 , 1999, Comput. Stat. Data Anal..

[29]  Douglas C. Montgomery,et al.  Introduction to Statistical Quality Control , 1986 .

[30]  Jean-Jacques Daudin,et al.  Double sampling X charts , 1992 .

[31]  Michael D. Conerly,et al.  Multivariate Forecast Based Control Charting Schemes , 2002 .

[32]  Takuji Nishimura,et al.  Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator , 1998, TOMC.

[33]  D. Hey,et al.  Design of double-and triple-sampling X-bar control charts using genetic algorithms , 2002 .

[34]  R. Korn,et al.  Monte Carlo Methods and Models in Finance and Insurance , 2010 .

[35]  M. Aalabaf-Sabaghi,et al.  Monte Carlo Methods and Models in Finance and Insurance , 2011 .

[36]  John S. Oakland,et al.  Statistical Process Control , 2018 .

[37]  Vasyl Golosnoy,et al.  EWMA Control Charts for Monitoring Optimal Portfolio Weights , 2007 .

[38]  M. E. Muller,et al.  A Note on the Generation of Random Normal Deviates , 1958 .

[39]  A. R. Crathorne,et al.  Economic Control of Quality of Manufactured Product. , 1933 .

[40]  I. D. Hill,et al.  Correction: Algorithm AS 183: An Efficient and Portable Pseudo-Random Number Generator , 1982 .

[41]  Michael D. Conerly,et al.  The Reverse Moving Average Control Chart for Monitoring Autocorrelated Processes , 2003 .

[42]  Lloyd S. Nelson,et al.  Column: Technical Aids: The Shewhart Control Chart--Tests for Special Causes , 1984 .

[43]  John N. Dyer,et al.  A Simple Mathematical Description of the Impact of Forecast Recovery for AR(2) Processes , 2000 .

[44]  David He,et al.  Design of double- and triple-sampling X-bar control charts using genetic algorithms , 2002 .

[45]  A. J. Kinderman,et al.  Computer Generation of Normal Random Variables , 1976 .

[46]  S BangushaDevi Statistical process control and its applications , 2017 .

[47]  S. W. Roberts Control chart tests based on geometric moving averages , 2000 .

[48]  J. Benneyan,et al.  Statistical process control as a tool for research and healthcare improvement , 2003, Quality & safety in health care.

[49]  Asvin Srinivasan,et al.  Application of information technology and statistical process control in pharmaceutical quality assurance & compliance , 2011 .

[50]  Pei-Hsi Lee,et al.  A Modified Statistical Design Model of Double Sampling X Control Chart , 2009 .

[51]  T. A. Bray,et al.  A Convenient Method for Generating Normal Variables , 1964 .

[52]  Wei Jiang,et al.  A statistical process control approach to business activity monitoring , 2007 .

[53]  Fah Fatt Gan,et al.  An optimal design of ewma control charts based on median run length , 1993 .

[54]  Michael B. C. Khoo,et al.  Optimal design of the double sampling X chart based on median run length , 2012 .