Reaction-Diffusion Front Speeds in Spatially-Temporally Periodic Shear Flows

We study the asymptotics of two space dimensional reaction-diffusion front speeds through mean zero space-time periodic shears using both analytical and numerical methods. The analysis hinges on traveling fronts and their estimates based on qualitative properties such as monotonicity and a priori integral inequalities. The computation uses an explicit second order upwind finite difference method to provide more quantitative information. At small shear amplitudes, front speeds are enhanced by an amount proportional to shear amplitude squared. The proportionality constant has a closed form expression. It decreases with increasing shear temporal frequency and is independent of the form of the known reaction nonlinearities. At large shear amplitudes and for all reaction nonlinearities, the enhanced speeds grow proportional to shear amplitude and are again decreasing with increasing shear temporal frequencies. The results extend previous ones in the literature on front speeds through spatially periodic shears ...

[1]  George Papanicolaou,et al.  Reaction-diffusion fronts in periodically layered media , 1991 .

[2]  Andrew J. Majda,et al.  Parametrizing the burning speed enhancement by small-scale periodic flows: I. Unsteady shears, flame residence time and bending , 2001 .

[3]  A. Stevens,et al.  Variational Principles for Propagation Speeds in Inhomogeneous Media , 2001, SIAM J. Appl. Math..

[4]  Kerstein,et al.  Propagation rate of growing interfaces in stirred fluids. , 1992, Physical review letters.

[5]  P. Lions,et al.  Multi-dimensional travelling-wave solutions of a flame propagation model , 1990 .

[6]  Jack Xin,et al.  Existence of planar flame fronts in convective-diffusive periodic media , 1992 .

[7]  F. Williams,et al.  Theory of premixed-flame propagation in large-scale turbulence , 1979, Journal of Fluid Mechanics.

[8]  Jack Xin,et al.  Front Propagation in Heterogeneous Media , 2000, SIAM Rev..

[9]  Henri Berestycki,et al.  On the method of moving planes and the sliding method , 1991 .

[10]  A. Kiselev,et al.  Enhancement of the traveling front speeds in reaction-diffusion equations with advection , 2000, math/0002175.

[11]  H. Berestycki The Influence of Advection on the Propagation of Fronts in Reaction-Diffusion Equations , 2002 .

[12]  Y. Pomeau,et al.  Réaction diffusion en écoulement stationnaire rapide , 2000 .

[13]  S. Heinze The speed of travelling waves for convective reaction-diffusion equations , 2001 .

[14]  P. Ronney Some open issues in premixed turbulent combustion , 1995 .

[15]  Adam M. Oberman,et al.  Bulk Burning Rate in¶Passive–Reactive Diffusion , 1999, math/9907132.

[16]  J. Xin KPP Front Speeds in Random Shears and the Parabolic Anderson Problem , 2002 .

[17]  O. Ruchayskiy,et al.  Flame enhancement and quenching in fluid flows , 2002, physics/0212057.

[18]  Andrew J. Majda,et al.  Flame fronts in a turbulent combustion model with fractal velocity fields , 1998 .

[19]  X. Xin,et al.  Existence and stability of traveling waves in periodic media governed by a bistable nonlinearity , 1991 .

[20]  J. Roquejoffre Stability of travelling fronts in a model for flame propagation Part II: Nonlinear stability , 1992 .

[21]  S.E.A.T.M. van der Zee,et al.  Transport of reactive solute in spatially variable soil systems , 1987 .

[22]  Victor Yakhot,et al.  Propagation Velocity of Premixed Turbulent Flames , 1988 .

[23]  P. Colella Multidimensional upwind methods for hyperbolic conservation laws , 1990 .

[24]  Jack Xin,et al.  Existence and nonexistence of traveling waves and reaction-diffusion front propagation in periodic media , 1993 .

[25]  Jack Xin,et al.  Quenching and propagation of bistable reaction-diffusion fronts in multidimensional periodic media , 1995 .

[26]  Paul D. Ronney,et al.  Fractal properties of propagating fronts in a strongly stirred fluid , 1995 .

[27]  M. Freidlin Functional Integration And Partial Differential Equations , 1985 .

[28]  E Weinan,et al.  The Heterognous Multiscale Methods , 2003 .

[29]  Andrew J. Majda,et al.  Large scale front dynamics for turbulent reaction-diffusion equations with separated velocity scales , 1994 .