Angle-resolved photoemission spectroscopy of the metallic sodium tungsten bronzes $Na_{x}WO_{3}$

We have carried out high-resolution angle-resolved photoemission spectroscopy (ARPES) to study the electronic structure of highly metallic $Na_{x}WO_{3}$ (x=0.58, 0.65, 0.7, and 0.8). The experimentally determined valence-band structure has been compared with the results of an ab initio band-structure calculation. While the presence of an impurity band (level) induced by Na doping is often invoked to explain the insulating state found at low concentrations, we find no signature of impurity band (level) in the metallic regime. The states near E-Fare populated and the Fermi edge shifts rigidly with increasing electron doping (x). The linear dispersion of the conduction band explains the linear variation of thermodynamic properties including the specific heat and magnetic susceptibility. The presence of an electron-like Fermi surface at \Gamma(X) and its evolution with increasing Na content and the rigid shift of the Fermi level within creasing x agrees well with the band calculation.

[1]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[2]  Furio Corà,et al.  First-principles investigation of ReO3 and related oxides , 1997 .

[3]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[4]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[5]  Roth,et al.  High-energy electron-energy-loss study of sodium-tungsten bronzes. , 1995, Physical review. B, Condensed matter.

[6]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[7]  Christensen,et al.  Electronic structure of cubic sodium tungsten bronze. , 1987, Physical review. B, Condensed matter.

[8]  Himpsel,et al.  Metal-nonmetal transition in tungsten bronzes: A photoemission study. , 1985, Physical review. B, Condensed matter.

[9]  Sutcu,et al.  x dependence of the electronic properties of cubic NaxWO3. , 1985, Physical review. B, Condensed matter.

[10]  M. D. Hill,et al.  The sodium tungsten bronzes: a study of the changes in electronic structure with composition using high-resolution electron spectroscopy , 1983 .

[11]  R. Bringans,et al.  Electronic structure of Na x W O 3 : A photoemission study covering the entire concentration range , 1982 .

[12]  J. Chazalviel,et al.  Is the rigid band model applicable to the sodium tungsten bronzes , 1981 .

[13]  D. P. Jackson,et al.  Surface relaxation of clean, and hydrogen covered Pt(111) , 1980 .

[14]  Z. Hurych,et al.  Vacuum ultraviolet-photoemission study of some sodium tungsten bronzes, Na x WO 3 , 1978 .

[15]  S. H. Liu,et al.  Band structure of cubic NaxWO3 , 1977 .

[16]  F. C. Zumsteg Heat capacity and magnetic susceptibility ofNaxWO3 , 1976 .

[17]  E. Banks,et al.  Local Character of Many-Body Effects in X-Ray Photoemission from Transition-Metal Compounds:NaxWO3 , 1975 .

[18]  H. Shanks Growth of tungsten bronze crystals by fused salt electrolysis , 1972 .

[19]  P. Anderson Absence of Diffusion in Certain Random Lattices , 1958 .

[20]  E. Banks,et al.  The Sodium Tungsten Bronzes1,2 , 1954 .

[21]  Claes G. Granqvist,et al.  Handbook of inorganic electrochromic materials , 1995 .