THE HERSCHEL DIGIT SURVEY OF WEAK-LINE T TAURI STARS: IMPLICATIONS FOR DISK EVOLUTION AND DISSIPATION

As part of the Dust, Ice, and Gas In Time (DIGIT) Herschel Open Time Key Program, we present Herschel photometry (at 70, 160, 250, 350, and 500 μm) of 31 weak-line T Tauri star (WTTS) candidates in order to investigate the evolutionary status of their circumstellar disks. Of the stars in our sample, 13 had circumstellar disks previously known from infrared observations at shorter wavelengths, while 18 of them had no previous evidence for a disk. We detect a total of 15 disks as all previously known disks are detected at one or more Herschel wavelengths and two additional disks are identified for the first time. The spectral energy distributions (SEDs) of our targets seem to trace the dissipation of the primordial disk and the transition to the debris disk regime. Of the 15 disks, 7 appear to be optically thick primordial disks, including 2 objects with SEDs indistinguishable from those of typical Classical T Tauri stars, 4 objects that have significant deficit of excess emission at all IR wavelengths, and 1 pre-transitional object with a known gap in the disk. Despite their previous WTTS classification, we find that the seven targets in our sample with optically thick disks show evidence for accretion. The remaining eight disks have weaker IR excesses similar to those of optically thin debris disks. Six of them are warm and show significant 24 μm Spitzer excesses, while the last two are newly identified cold debris-like disks with photospheric 24 μm fluxes, but significant excess emission at longer wavelengths. The Herschel photometry also places strong constraints on the non-detections, where systems with F 70/F 70, 5-15 and L disk/L 10–3 to 10–4 can be ruled out. We present preliminary models for both the optically thick and optically thin disks and discuss our results in the context of the evolution and dissipation of circumstellar disks.

[1]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[2]  G. Herbig,et al.  Third Catalog of Emission-Line Stars of the Orion Population : 3 : 1988 , 1988 .

[3]  Near-Infrared Photometric Variability of Stars toward the Orion A Molecular Cloud , 2001, astro-ph/0102446.

[4]  O. Krause,et al.  Far-infrared Source Counts at 70 and 160 Microns in Spitzer Deep Surveys , 2004, astro-ph/0406021.

[5]  C. Clarke,et al.  Photoevaporation of protoplanetary discs - II. Evolutionary models and observable properties , 2006, astro-ph/0603254.

[6]  C. Melo The short period multiplicity among T Tauri stars , 2003 .

[7]  S. Ott,et al.  Herschel Space Observatory - An ESA facility for far-infrared and submillimetre astronomy , 2010, 1005.5331.

[8]  D. Padgett,et al.  Probing dust grain evolution in IM Lupi's circumstellar disc. Multi-wavelength observations and mo , 2008, 0808.0619.

[9]  J. Holtzman,et al.  Optical monitoring of Orion population stars. I. Results for some T Tauri and Herbig Ae/Be stars. , 1982 .

[10]  S. Wolf,et al.  A HERSCHEL SURVEY OF COLD DUST IN DISKS AROUND BROWN DWARFS AND LOW-MASS STARS , 2012, 1206.1161.

[11]  N. Kains,et al.  Steady-state evolution of debris discs around solar-type stars , 2011, 1102.4341.

[12]  D. Padgett,et al.  The Spitzer c2d Survey of Weak-Line T Tauri Stars. II. New Constraints on the Timescale for Planet Building , 2007, 0706.0563.

[13]  Catherine Espaillat,et al.  RESOLVED IMAGES OF LARGE CAVITIES IN PROTOPLANETARY TRANSITION DISKS , 2011, 1103.0284.

[14]  B. Wilking,et al.  An H-alpha emission-line survey of the rho Ophiuchi dark cloud complex , 1987 .

[15]  D. B. Navascués On the age of the TW Hydrae association and 2M1207334-393254 , 2006, astro-ph/0608478.

[16]  J. S. Dohnanyi Collisional model of asteroids and their debris , 1969 .

[17]  et al,et al.  Frequency of Debris Disks around Solar-Type Stars: First Results from a Spitzer MIPS Survey , 2005, astro-ph/0509199.

[18]  Gregory Dobler,et al.  THE FERMI GAMMA-RAY HAZE FROM DARK MATTER ANNIHILATIONS AND ANISOTROPIC DIFFUSION , 2011, 1102.5095.

[19]  M. R. Haas,et al.  PLANET OCCURRENCE WITHIN 0.25 AU OF SOLAR-TYPE STARS FROM KEPLER , 2011, 1103.2541.

[20]  L. Testi,et al.  Accretion in brown dwarfs: An infrared view , 2004 .

[21]  D. Nguyen,et al.  DISK BRAKING IN YOUNG STARS: PROBING ROTATION IN CHAMAELEON I AND TAURUS-AURIGA , 2009, 0902.0001.

[22]  Sarah E. Dodson-Robinson,et al.  TRANSITIONAL DISKS AS SIGNPOSTS OF YOUNG, MULTIPLANET SYSTEMS , 2011, 1106.4824.

[23]  C. Dominik,et al.  Dust coagulation in protoplanetary disks: A rapid depletion of small grains , 2004, astro-ph/0412117.

[24]  E. Martín,et al.  Spectroscopic classification of X-ray selected stars in the ρ Ophiuchi star-forming region and vicinity , 1998 .

[25]  Jonathan P. Williams,et al.  Circumstellar Dust Disks in Taurus-Auriga: The Submillimeter Perspective , 2005, astro-ph/0506187.

[26]  Robert Mann,et al.  Astronomical Data Analysis Software and Systems XXI , 2012 .

[27]  S. Lubow,et al.  Dynamics of binary-disk interaction. 1: Resonances and disk gap sizes , 1994 .

[28]  P. Schechter,et al.  DOPHOT, A CCD PHOTOMETRY PROGRAM: DESCRIPTION AND TESTS , 1993 .

[29]  D. Padgett,et al.  The SPITZER c2d Survey of Weak-Line T Tauri Stars. I. Initial Results , 2006 .

[30]  S. Kenyon,et al.  Variations on Debris Disks: Icy Planet Formation at 30-150 AU for 1-3 M☉ Main-Sequence Stars , 2008, 0807.1134.

[31]  Paul M. Harvey,et al.  THE NATURE OF TRANSITION CIRCUMSTELLAR DISKS. I. THE OPHIUCHUS MOLECULAR CLOUD , 2010, 1001.4825.

[32]  L. Prato A Survey for Young Spectroscopic Binary K7-M4 Stars in Ophiuchus , 2006, astro-ph/0611636.

[33]  K. Rice,et al.  Protostars and Planets V , 2005 .

[34]  J. M. Alacid,et al.  The Herschel view of GAS in Protoplanetary Systems (GASPS): First comparisons with a large grid of models , 2010, 1005.3826.

[35]  C. A. O. Torres,et al.  Search for associations containing young stars (SACY). I. Sample and searching method , 2006 .

[36]  C. Dullemond,et al.  PROTOPLANETARY DISK STRUCTURES IN OPHIUCHUS. II. EXTENSION TO FAINTER SOURCES , 2010, 1007.5070.

[37]  George H. Herbig,et al.  Second Catalog of Emission-Line Stars of the Orion Population , 1972 .

[38]  J. Augereau,et al.  Cold Disks: Spitzer Spectroscopy of Disks around Young Stars with Large Gaps , 2007, 0707.0304.

[39]  P. Kalas,et al.  Mass and Temperature of the TWA 7 Debris Disk , 2007, 0704.0463.

[40]  Frantz Martinache,et al.  MAPPING THE SHORES OF THE BROWN DWARF DESERT. II. MULTIPLE STAR FORMATION IN TAURUS–AURIGA , 2011, 1101.4016.

[41]  Ucla,et al.  Exploring Terrestrial Planet Formation in the TW Hydrae Association , 2005, astro-ph/0506291.

[42]  Catherine Espaillat,et al.  TRANSITIONAL AND PRE-TRANSITIONAL DISKS: GAP OPENING BY MULTIPLE PLANETS? , 2010, 1012.4395.

[43]  P. Hartigan,et al.  Disk Accretion and Mass Loss from Young Stars , 1995 .

[44]  L. Hartmann,et al.  THE DISK POPULATION OF THE TAURUS STAR-FORMING REGION , 2009, 0911.5457.

[45]  N. Reid Activity and kinematics of members of the TW Hydrae association , 2003 .

[46]  B. Draine INTERSTELLAR DUST GRAINS , 2003, astro-ph/0304489.

[47]  Debris disks as signposts of terrestrial planet formation , 2011, 1104.0007.

[48]  L. Loinard,et al.  A Preliminary VLBA Distance to the Core of Ophiuchus, with an Accuracy of 4% , 2008 .

[49]  M. Wyatt,et al.  Evolution of Debris Disks , 2008 .

[50]  Ulisse Munari,et al.  The Asiago Database on Photometric Systems (ADPS) - II. Band and reddening parameters , 2003 .

[51]  R. Köhler,et al.  Close Binaries in the η Chamaeleontis Cluster , 2002 .

[52]  Jonathan P. Williams,et al.  PROTOPLANETARY DISK MASSES IN IC348: A RAPID DECLINE IN THE POPULATION OF SMALL DUST GRAINS AFTER 1 Myr , 2011, 1105.2046.

[53]  Jonathan P. Williams,et al.  A Submillimeter View of Circumstellar Dust Disks in ρ Ophiuchi , 2007, 0708.4185.

[54]  P. Hartigan,et al.  The stellar population of the Lupus clouds , 1994 .

[55]  Barbara Ercolano,et al.  Protoplanetary disc evolution and dispersal: the implications of X-ray photoevaporation , 2010, 1010.0826.

[56]  T. Henning,et al.  HERSCHEL OBSERVATIONS OF THE T CHA TRANSITION DISK: CONSTRAINING THE OUTER DISK PROPERTIES , 2011, 1109.6041.

[57]  P. O. Hulth,et al.  TIME-DEPENDENT SEARCHES FOR POINT SOURCES OF NEUTRINOS WITH THE 40-STRING AND 22-STRING CONFIGURATIONS OF ICECUBE , 2011, 1104.0075.

[58]  K. Keil,et al.  Protostars and Planets V , 2007 .

[59]  Caltech,et al.  Very Low Mass Stars and Brown Dwarfs in Taurus-Auriga , 2002, astro-ph/0209164.

[60]  J. Hovenier,et al.  Modeling optical properties of cosmic dust grains using a distribution of hollow spheres , 2005, astro-ph/0503068.

[61]  Th. Henning,et al.  Large dust particles in disks around T Tauri stars , 2006 .

[62]  Jonathan P. Williams,et al.  880 μm IMAGING OF A TRANSITIONAL DISK IN UPPER SCORPIUS: HOLDOVER FROM THE ERA OF GIANT PLANET FORMATION? , 2012, 1205.3545.

[63]  R. Wichmann,et al.  New weak-line T Tauri stars in Lupus (Krautter+ 1997) , 1996 .

[64]  M. Esposito,et al.  Variability of the transitional T Tauri star T Chamaeleontis , 2009, 0904.0101.

[65]  Frantz Martinache,et al.  MAPPING THE SHORES OF THE BROWN DWARF DESERT. III. YOUNG MOVING GROUPS , 2011, 1109.5900.

[66]  ESO,et al.  A VLT/NACO survey for triple and quadruple systems among visual pre-main sequence binaries , , 2006, astro-ph/0608674.

[67]  R. Jayawardhana,et al.  Evidence for a T Tauri Phase in Young Brown Dwarfs , 2003, astro-ph/0303565.

[68]  Jonathan P. Williams,et al.  Protoplanetary Disks and Their Evolution , 2011, 1103.0556.

[69]  Ithaca,et al.  A Survey and Analysis of Spitzer Infrared Spectrograph Spectra of T Tauri Stars in Taurus , 2006, astro-ph/0608038.

[70]  Prospects for detection of catastrophic collisions in debris disks , 2005, astro-ph/0503551.

[71]  K. Y. L. Su,et al.  Debris Disks around Sun-like Stars , 2007, 0710.5498.

[72]  E. F. Dishoeck,et al.  Investigating grain growth in disks around southern T Tauri stars at millimetre wavelengths , 2006, astro-ph/0610667.

[73]  Yan Xu,et al.  TEMPORAL EVOLUTION OF FREE MAGNETIC ENERGY ASSOCIATED WITH FOUR X-CLASS FLARES , 2009 .

[74]  S. J. Liu,et al.  Herschel : the first science highlights Special feature L etter to the E ditor The Herschel-SPIRE instrument and its in-flight performance , 2010 .

[75]  J. Silk,et al.  On the Magnitude of Dark Energy Voids and Overdensities , 2007, 0709.2227.

[76]  L. Hartmann,et al.  Pre-Main-Sequence Evolution in the Taurus-Auriga Molecular Cloud , 1995 .

[77]  S. Leiden,et al.  A multiplicity survey of the ρ Ophiuchi molecular clouds , 2005, astro-ph/0504593.

[78]  S. Wolf,et al.  A HERSCHEL SEARCH FOR COLD DUST IN BROWN DWARF DISKS: FIRST RESULTS , 2011, 1110.4586.

[79]  D. Padgett,et al.  THE SPITZER c2d SURVEY OF WEAK-LINE T TAURI STARS. III. THE TRANSITION FROM PRIMORDIAL DISKS TO DEBRIS DISKS , 2010, 1009.4460.

[80]  G. Chauvin,et al.  A companion candidate in the gap of the T Chamaeleontis transitional disk , 2011, 1102.4982.

[81]  E. Jensen,et al.  NO TRANSITION DISK? INFRARED EXCESS, PAH, H2, AND X-RAYS FROM THE WEAK-LINED T TAURI STAR DoAr 21 , 2009, 0907.4980.

[82]  T. Henning,et al.  TURBULENCE AND STEADY FLOWS IN THREE-DIMENSIONAL GLOBAL STRATIFIED MAGNETOHYDRODYNAMIC SIMULATIONS OF ACCRETION DISKS , 2011, 1104.4565.

[83]  Alexis Brandeker,et al.  Accretion Disks around Young Stars: Lifetimes, Disk Locking, and Variability , 2006, astro-ph/0605601.

[84]  Frantz Martinache,et al.  THE ROLE OF MULTIPLICITY IN DISK EVOLUTION AND PLANET FORMATION , 2011, 1109.4141.

[85]  C. Dullemond,et al.  TIME EVOLUTION OF VISCOUS CIRCUMSTELLAR DISKS DUE TO PHOTOEVAPORATION BY FAR-ULTRAVIOLET, EXTREME-ULTRAVIOLET, AND X-RAY RADIATION FROM THE CENTRAL STAR , 2009, 0909.1836.

[86]  Peter Abraham,et al.  Transient dust in warm debris disks - Detection of Fe-rich olivine grains , 2012, 1204.2374.

[87]  J. Augereau,et al.  Spitzer Observations of the Hyades: Circumstellar Debris Disks at 625 Myr of Age , 2008, 0801.4403.

[88]  Jonathan P. Williams,et al.  SUBMILLIMETER ARRAY OBSERVATIONS OF THE RX J1633.9-2442 TRANSITION DISK: EVIDENCE FOR MULTIPLE PLANETS IN THE MAKING , 2012, 1204.5722.

[89]  D. Nguyen,et al.  CLOSE COMPANIONS TO YOUNG STARS. I. A LARGE SPECTROSCOPIC SURVEY IN CHAMAELEON I AND TAURUS-AURIGA , 2011, 1112.0002.

[90]  E. Feigelson,et al.  THE LONG-LIVED DISKS IN THE η CHAMAELEONTIS CLUSTER , 2009, 0906.3365.

[91]  Jonathan P. Williams,et al.  THE NATURE OF TRANSITION CIRCUMSTELLAR DISKS. III. PERSEUS, TAURUS, AND AURIGA , 2012, 1203.6849.

[92]  D. Padgett,et al.  PRIMORDIAL CIRCUMSTELLAR DISKS IN BINARY SYSTEMS: EVIDENCE FOR REDUCED LIFETIMES , 2009, 0903.3057.

[93]  D. Padgett,et al.  THE SPITZER c2d LEGACY RESULTS: STAR-FORMATION RATES AND EFFICIENCIES; EVOLUTION AND LIFETIMES , 2008, 0811.1059.

[94]  H. Bischof,et al.  The Photodetector Array Camera and Spectrometer (PACS) on the Herschel Space Observatory , 2010, 1005.1487.

[95]  E. al.,et al.  From molecular cores to planet-forming disks: An SIRTF legacy program , 2003, astro-ph/0305127.

[96]  L. Hartmann,et al.  On the Diversity of the Taurus Transitional Disks: UX Tauri A and LkCa 15 , 2007, 0710.2892.

[97]  M. Dunham,et al.  RESOLVING THE LUMINOSITY PROBLEM IN LOW-MASS STAR FORMATION , 2011, 1112.4789.

[98]  Michael F. Skrutskie,et al.  Circumstellar Material Associated with Solar-Type Pre-Main-Sequence Stars: A Possible Constraint on the Timescale for Planet Building , 1989 .

[99]  T. Henning,et al.  Coagulation, fragmentation and radial motion of solid particles in protoplanetary disks , 2007, 0711.2192.

[100]  S. Wolf,et al.  Herschel discovery of a new class of cold, faint debris discs , 2011, 1110.4826.

[101]  C. Dominik,et al.  The effect of dust settling on the appearance of protoplanetary disks , 2004, astro-ph/0405226.

[102]  Jonathan P. Williams,et al.  The Masses of Transition Circumstellar Disks: Observational Support for Photoevaporation Models , 2008, 0809.0030.

[103]  L. Hartmann,et al.  Accretion and the Evolution of T Tauri Disks , 1998 .

[104]  S. Strom,et al.  Are wide pre-main-sequence binaries coeval? , 1994 .