Modelling polarized light for computer graphics

The quality of visual realism in computer generated images is largely determined by the accuracy of the reflection model. Advances in global illumination techniques have removed to a large extent, some of the limitations on the physical correctness achievable by reflection models. While models currently used by researchers are physically based, most approaches have ignored the polarization of light. The few previous efforts addressing the polarization of light were hampered by inherently unphysical light transport algorithms. This paper, besides taking polarization of light into account in the reflection computation, also provides a basis for modelling polarization as an inherent attribute of light, using the Stokes parameters. A reflection model is developed within this framework and the implementation within a global illumination algorithm called Photon is presented.

[1]  P. Beckmann,et al.  The scattering of electromagnetic waves from rough surfaces , 1963 .

[2]  James E. Vastyan,et al.  Computer graphics: A programming approach , 1983 .

[3]  P. Beckmann Shadowing of random rough surfaces , 1965 .

[4]  T. F. Smith,et al.  Effects of Polarization on Bidirectional Reflectance of a One-Dimensional Randomly Rough Surface , 1981 .

[5]  Donald P. Greenberg,et al.  A radiosity method for non-diffuse environments , 1986, SIGGRAPH.

[6]  Turner Whitted,et al.  An improved illumination model for shaded display , 1979, CACM.

[7]  Girish S. Agarwal,et al.  Scattering from rough surfaces , 1975 .

[8]  G. Rybicki Radiative transfer , 2019, Climate Change and Terrestrial Ecosystem Modeling.

[9]  L. Devroye Non-Uniform Random Variate Generation , 1986 .

[10]  Bui Tuong Phong Illumination for computer generated pictures , 1975, Commun. ACM.

[11]  Michael J. Wozny,et al.  Polarization and birefringency considerations in rendering , 1994, SIGGRAPH.

[12]  Quinn Snell,et al.  Parallel hierarchical global illumination , 1997, Proceedings. The Sixth IEEE International Symposium on High Performance Distributed Computing (Cat. No.97TB100183).

[13]  大野 義夫,et al.  Computer Graphics : Principles and Practice, 2nd edition, J.D. Foley, A.van Dam, S.K. Feiner, J.F. Hughes, Addison-Wesley, 1990 , 1991 .

[14]  Stephen H. Westin,et al.  A global illumination solution for general reflectance distributions , 1991, SIGGRAPH.

[15]  Edward Collett,et al.  Polarized light. Fundamentals and applications , 1993 .

[16]  Soon K. Cho,et al.  Electromagnetic Scattering , 2012 .

[17]  Maria Lurdes Dias Ray tracing interference color: visualizing Newton's rings , 1994, IEEE Computer Graphics and Applications.

[18]  B. Smith,et al.  Geometrical shadowing of a random rough surface , 1967 .

[19]  M. Pinar Mengüç,et al.  Thermal Radiation Heat Transfer , 2020 .

[20]  A. Voronovich Wave Scattering from Rough Surfaces , 1994 .

[21]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[22]  James T. Kajiya,et al.  The rendering equation , 1998 .

[23]  Ezekiel Bahar,et al.  Full-Wave Theory Applied to Computer-Aided Graphics for 3D Objects , 1987, IEEE Computer Graphics and Applications.

[24]  Donald P. Greenberg,et al.  A comprehensive physical model for light reflection , 1991, SIGGRAPH.

[25]  Lawrence B. Wolff,et al.  Ray tracing with polarization parameters , 1990, IEEE Computer Graphics and Applications.

[26]  Robert L. Cook,et al.  A Reflectance Model for Computer Graphics , 1987, TOGS.

[27]  Stephen H. Westin,et al.  Predicting reflectance functions from complex surfaces , 1992, SIGGRAPH.

[28]  A. Stogryn Electromagnetic Scattering From Rough, Finitely Conducting Surfaces , 1967 .

[29]  Donald P. Greenberg,et al.  Global Illumination via Density Estimation , 1995, Rendering Techniques.

[30]  T. Teichmann,et al.  Radiative Transfer on Discrete Spaces , 1966 .

[31]  E. Bahar Review of the full wave solutions for rough surface scattering and depolarization , 1987 .

[32]  Ronald L. Wasserstein,et al.  Monte Carlo: Concepts, Algorithms, and Applications , 1997 .

[33]  Arthur Appel,et al.  Some techniques for shading machine renderings of solids , 1968, AFIPS Spring Joint Computing Conference.

[34]  R. E. Shafer,et al.  Algorithm 443: Solution of the transcendental equation wew = x , 1973, Commun. ACM.

[35]  David Salesin,et al.  A fast and accurate light reflection model , 1992, SIGGRAPH.