Analysis, Synchronization and Microcontroller Implementation of a New Quasiperiodically Forced Chaotic Oscillator with Megastability

Periodically and quasiperiodically forced nonlinear oscillators are in the group of systems which can exhibit chaotic behavior. Chaotic systems could be characterized by their strange attractor’s properties into one or more subtypes, e.g., chaotic systems with hidden attractors, megastability or extreme multistability. In this article, we propose a new quasiperiodically forced chaotic system, which has megastability. The statistical properties, bifurcation diagram, Lyapunov exponents and entropy analysis are considered to study this new system. Furthermore, for the first time, the bidirectional and unidirectional coupling schemes between two quasiperiodically forced chaotic systems with megastability have been studied. As it is observed, when the value of the coupling coefficient is increased in both coupling schemes, the coupled systems undergo a transition from desynchronization mode to complete synchronization. Also, the simulation results reveal the richness of the coupled system’s dynamical behavior. In particular, in the bidirectional coupling case, interesting nonlinear dynamics, such as a transition from a chaotic to quasiperiodic desynchronization and finally to a complete synchronization via an intermittent phenomenon, are observed. Furthermore, in the unidirectional coupling case, in which the system passes from the desynchronization to complete synchronization through a region where the chaotic attractor of the second coupled system is shifted and decreased, is also observed. Finally, the system’s realization has been done by using a microcontroller.

[1]  Myke Predko Programming and Customizing Picmicro Microcontrollers , 2000 .

[2]  Voss,et al.  Anticipating chaotic synchronization , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[3]  Julien Clinton Sprott,et al.  Variable-boostable chaotic flows , 2016 .

[4]  Wolfgang Kinzel,et al.  Public-channel cryptography using chaos synchronization. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  Bocheng Bao,et al.  Hidden extreme multistability in memristive hyperchaotic system , 2017 .

[6]  Zhe Xu,et al.  A New Chaotic Attractor Around a Pre-Located Ring , 2017, Int. J. Bifurc. Chaos.

[7]  Peter B. Kahn,et al.  Nonlinear Dynamics: Exploration Through Normal Forms , 1998 .

[8]  Julien Clinton Sprott,et al.  Multistability in the Lorenz System: A Broken Butterfly , 2014, Int. J. Bifurc. Chaos.

[9]  R. Rakkiyappan,et al.  Non‐Fragile Synchronization Control For Markovian Jumping Complex Dynamical Networks With Probabilistic Time‐Varying Coupling Delays , 2015 .

[10]  Alan V. Oppenheim,et al.  Synchronization of Lorenz-based chaotic circuits with applications to communications , 1993 .

[11]  Leon O. Chua,et al.  Experimental Demonstration of Secure Communications via Chaotic Synchronization , 1992, Chua's Circuit.

[12]  Christos K. Volos,et al.  Chaotic Random Bit Generator Realized with a Microcontroller , 2013 .

[13]  Viet-Thanh Pham,et al.  A new nonlinear oscillator with infinite number of coexisting hidden and self-excited attractors , 2018 .

[14]  Leon O. Chua,et al.  Awakening dynamics via passive coupling and synchronization mechanism in oscillatory cellular neural/nonlinear networks , 2008, Int. J. Circuit Theory Appl..

[15]  Wenguang Yu Synchronization of three dimensional chaotic systems via a single state feedback , 2011 .

[16]  Abbas Dandache,et al.  A new auto-switched chaotic system and its FPGA implementation , 2013, Commun. Nonlinear Sci. Numer. Simul..

[17]  Varun Jeoti,et al.  A Chaos-Based Substitution Box (S-Box) Design with Improved Differential Approximation Probability (DP) , 2018 .

[18]  Viet-Thanh Pham,et al.  A Modified Multistable Chaotic Oscillator , 2018, Int. J. Bifurc. Chaos.

[19]  Ahmad Taher Azar,et al.  FPGA implementation of two fractional order chaotic systems , 2017 .

[20]  Julien Clinton Sprott,et al.  An infinite 2-D lattice of strange attractors , 2017 .

[21]  G. Leonov,et al.  Localization of hidden Chuaʼs attractors , 2011 .

[22]  Shen Ke,et al.  Synchronization of chaotic erbium-doped fibre lasers and its application in secure communication , 2004 .

[23]  Bocheng Bao,et al.  Extreme multistability in a memristive circuit , 2016 .

[24]  Wei Zhang,et al.  A new three-dimensional chaotic system with wide range of parameters , 2013 .

[25]  Moez Feki,et al.  Secure digital communication using discrete-time chaos synchronization , 2003 .

[26]  E. Mosekilde,et al.  Synchronization phenomena in nephron-nephron interaction. , 2001, Chaos.

[27]  Julien Clinton Sprott,et al.  Megastability: Coexistence of a countable infinity of nested attractors in a periodically-forced oscillator with spatially-periodic damping , 2017 .

[28]  Gonzalo Álvarez,et al.  Some Basic Cryptographic Requirements for Chaos-Based Cryptosystems , 2003, Int. J. Bifurc. Chaos.

[29]  Julien Clinton Sprott,et al.  Simple Chaotic Hyperjerk System , 2016, Int. J. Bifurc. Chaos.

[30]  Julien Clinton Sprott,et al.  An infinite 3-D quasiperiodic lattice of chaotic attractors , 2018 .

[31]  Ying-Cheng Lai,et al.  ANTIPHASE SYNCHRONISM IN CHAOTIC SYSTEMS , 1998 .

[32]  Viet-Thanh Pham,et al.  Constructing a Chaotic System with an Infinite Number of Equilibrium Points , 2016, Int. J. Bifurc. Chaos.

[33]  Ioannis M. Kyprianidis,et al.  Synchronization of two resistively coupled nonautonomous and hyperchaotic oscillators , 2003 .

[34]  Nikolay V. Kuznetsov,et al.  Analytical-numerical method for attractor localization of generalized Chua's system , 2010, PSYCO.

[35]  Huagan Wu,et al.  Controlling extreme multistability of memristor emulator-based dynamical circuit in flux–charge domain , 2018 .

[36]  Jürgen Kurths,et al.  Synchronization - A Universal Concept in Nonlinear Sciences , 2001, Cambridge Nonlinear Science Series.

[37]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[38]  Polina S. Landa,et al.  Synchronizing the chaotic oscillations by external force , 1991 .

[39]  Julien Clinton Sprott,et al.  Multistability in symmetric chaotic systems , 2015 .

[40]  Alexander S. Dmitriev,et al.  Ultrawideband wireless communications based on dynamic chaos , 2006 .

[41]  J. Sprott Elegant Chaos: Algebraically Simple Chaotic Flows , 2010 .

[42]  Kehui Sun,et al.  Multivariate Multiscale Complexity Analysis of Self-Reproducing Chaotic Systems , 2018, Entropy.

[43]  Leon O. Chua,et al.  Awakening dynamics via passive coupling and synchronization mechanism in oscillatory cellular neural-nonlinear networks , 2008 .

[44]  Young-Jai Park,et al.  Anti-synchronization of chaotic oscillators , 2003 .

[45]  J. A. Scott Kelso,et al.  Brain coordination dynamics: True and false faces of phase synchrony and metastability , 2009, Progress in Neurobiology.

[46]  Chai Wah Wu,et al.  A Simple Way to Synchronize Chaotic Systems with Applications to , 1993 .

[47]  José-Cruz Nuñez Pérez,et al.  FPGA realization of multi-scroll chaotic oscillators , 2015, Commun. Nonlinear Sci. Numer. Simul..

[48]  Saverio Mascolo,et al.  Synchronization of high-order oscillators by observer design with application to hyperchaos-based cryptography , 1999 .

[49]  M. Baptista Cryptography with chaos , 1998 .

[50]  Mohammad Saleh Tavazoei,et al.  Experimental study of a chaos‐based communication system in the presence of unknown transmission delay , 2010, Int. J. Circuit Theory Appl..

[51]  Jinde Cao,et al.  Switching Laws Design for Stability of Finite and Infinite Delayed Switched Systems With Stable and Unstable Modes , 2018, IEEE Access.

[52]  Xiaodi Li,et al.  Synchronization of chaotic delayed neural networks with impulsive and stochastic perturbations , 2011 .

[53]  S. Li,et al.  Cryptographic requirements for chaotic secure communications , 2003, nlin/0311039.

[54]  A. Pikovsky,et al.  Synchronization: Theory and Application , 2003 .

[55]  Luigi Fortuna,et al.  Field Programmable Analog Array to Implement a Programmable Chua's Circuit , 2005, Int. J. Bifurc. Chaos.

[56]  Tomasz Kapitaniak,et al.  Carpet oscillator: A new megastable nonlinear oscillator with infinite islands of self-excited and hidden attractors , 2018, Pramana.

[57]  Vishwesh A. Vyawahare,et al.  FPGA implementation of fractional-order chaotic systems , 2017 .

[58]  Bocheng Bao,et al.  Two-memristor-based Chua’s hyperchaotic circuit with plane equilibrium and its extreme multistability , 2017 .

[59]  Recai Kiliç,et al.  Reconfigurable Implementations of Chua's Circuit , 2009, Int. J. Bifurc. Chaos.

[60]  G. Leonov,et al.  Hidden attractors in dynamical systems , 2016 .

[61]  Leonardo Acho,et al.  A discrete-time chaotic oscillator based on the logistic map: A secure communication scheme and a simple experiment using Arduino , 2015, J. Frankl. Inst..

[62]  Leon O. Chua,et al.  EXPERIMENTAL CHAOS SYNCHRONIZATION IN CHUA'S CIRCUIT , 1992 .

[63]  Sezgin Kaçar Analog circuit and microcontroller based RNG application of a new easy realizable 4D chaotic system , 2016 .

[64]  Y. Pomeau,et al.  Intermittent transition to turbulence in dissipative dynamical systems , 1980 .

[65]  Guo-Hui Li Inverse lag synchronization in chaotic systems , 2009 .

[66]  W. Schwarz,et al.  Chaos and cryptography , 2001 .

[67]  İsmail Koyuncu,et al.  Hardware design and implementation of a novel ANN-based chaotic generator in FPGA , 2016 .

[68]  Christos Volos,et al.  Experimental demonstration of a chaotic cryptographic scheme , 2006 .

[69]  Xiaodi Li,et al.  Stabilization of Delay Systems: Delay-Dependent Impulsive Control , 2017, IEEE Transactions on Automatic Control.

[70]  Tasawar Hayat,et al.  A new oscillator with infinite coexisting asymmetric attractors , 2018 .

[71]  Julien Clinton Sprott,et al.  Infinite Multistability in a Self-Reproducing Chaotic System , 2017, Int. J. Bifurc. Chaos.

[72]  E. Mosekilde,et al.  Chaotic Synchronization: Applications to Living Systems , 2002 .

[73]  R. Rakkiyappan,et al.  Impulsive controller design for exponential synchronization of chaotic neural networks with mixed delays , 2013, Commun. Nonlinear Sci. Numer. Simul..

[74]  Silvano Donati,et al.  Synchronization of chaotic lasers by optical feedback for cryptographic applications , 1997 .

[75]  Jesus M. Munoz-Pacheco,et al.  Chaos generation in fractional-order switched systems and its digital implementation , 2017 .

[76]  Abdel-Kaddous Taha,et al.  Chaos-based cryptosystem on DSP , 2009 .