Zipper Codes: Spatially-Coupled Product-Like Codes with Iterative Algebraic Decoding

We introduce zipper codes, a new framework for describing spatially-coupled product-like codes. This framework consists of a zipping pair, an interleaver map, and a constituent code. Some constructions of well-known codes can be represented in this framework. Simulation results show that a rate 0.98 tiled diagonal zipper code with a triple-error-correcting constituent code can achieve 0.49 dB gap from capacity.

[1]  Michael Lentmaier,et al.  Braided Block Codes , 2009, IEEE Transactions on Information Theory.

[2]  Peter Elias,et al.  Error-free Coding , 1954, Trans. IRE Prof. Group Inf. Theory.

[3]  Michael Lentmaier,et al.  On generalized low-density parity-check codes based on Hamming component codes , 1999, IEEE Communications Letters.

[4]  Jørn Justesen,et al.  Error correcting coding for OTN , 2010, IEEE Communications Magazine.

[5]  Robert B. Ash,et al.  Analysis of recurrent codes , 1963, IEEE Trans. Inf. Theory.

[6]  Frank R. Kschischang,et al.  Spatially Coupled Split-Component Codes With Iterative Algebraic Decoding , 2015, IEEE Transactions on Information Theory.

[7]  Ludo M. G. M. Tolhuizen,et al.  On Diamond codes , 1997, IEEE Trans. Inf. Theory.

[8]  Henry D. Pfister,et al.  Approaching Capacity at High Rates With Iterative Hard-Decision Decoding , 2017, IEEE Trans. Inf. Theory.

[9]  Frank R. Kschischang,et al.  Staircase Codes: FEC for 100 Gb/s OTN , 2012, Journal of Lightwave Technology.