Multi-Disciplinary Design Tool for Axial Flow Turbines

A preliminary design tool has been created to aid in the design of axial flow turbines. The design tool outputs all of the required geometry and flow conditions for the preliminary design of a single stage axial turbine. Inherent to the tool is its ability to produce performance estimates, both aerodynamically and structurally. The aerodynamic analysis is largely empirical based and makes use of the most up-to-date correlations available in the literature. The tool has been created to obtain a fast estimate of performance and a fast screening of various design variables. The design tool is also required in order to produce a geometrical input for more advanced computational fluid dynamic (CFD) and finite element method (FEM) analyses. A test case has been conducted through the design and development of two single stage turbines for a 1-MW gas turbine engine. The results of the design tool were then compared to those results obtained from extensive CFD and FEM analyses to validate the accuracy of the tool. Overall, the results showed excellent agreement both aerodynamically and structurally.Copyright © 2006 by ASME

[1]  Nobuo Sakurai,et al.  Elastic Design of Fir-Tree Joints for Blade Fastenings , 1967 .

[2]  Leslie Fielding Handheld Calculator Programs for Rotating Equipment Design , 1983 .

[3]  N. Arakere,et al.  Fatigue Failure in High-Temperature Single Crystal Superalloy Turbine Blades , 2001 .

[4]  H. E. Gallus,et al.  Endwall and Unsteady Flow Phenomena in an Axial Turbine Stage , 1994 .

[5]  K. P. Rao,et al.  Studies on creep/stress rupture behaviour of superalloy 718 weldments used in gas turbine applications , 1994 .

[6]  R Van den Braembussche,et al.  A two-dimensional Navier—Stokes inverse solver for compressor and turbine blade design , 1997 .

[7]  Shaker A. Meguid,et al.  Finite element analysis of fir-tree region in turbine discs , 2000 .

[8]  Zainul Huda,et al.  Development of design principles for a creep-limited alloy for turbine blades , 1995, Journal of Materials Engineering and Performance.

[9]  John W. Chew,et al.  Application of Computational Fluid Dynamics to Turbine Disc Cavities , 1993 .

[10]  S. S. Manson,et al.  Interfaces between fatigue, creep, and fracture , 2012 .

[11]  R. J. Roelke,et al.  The Effect of Rotor Blade Thickness and Surface Finish on the Performance of a Small Axial Flow Turbine , 1983 .

[12]  Budugar Lakshminarayana,et al.  Tip Clearance Effects in a Turbine Rotor: Part II—Velocity Field and Flow Physics , 2001 .

[13]  A. C. Hagg,et al.  The Containment of Disk Burst Fragments by Cylindrical Shells , 1974 .

[14]  N. Baines Axial and Radial Turbines , 2003 .

[15]  James Anderson,et al.  Development of New High Load/High Lift Transonic Shrouded HP Gas Turbine Stage Design: A New Approach for Turbomachinery , 2002 .

[16]  F. Menter Two-equation eddy-viscosity turbulence models for engineering applications , 1994 .

[17]  J. S. Rao Turbomachine Blade Vibration , 1991 .

[18]  John W. Sawyer,et al.  Sawyer's gas turbine engineering handbook , 1972 .

[19]  C. H. Sieverding,et al.  Axial Turbine Performance Prediction Methods , 1985 .

[20]  INCONEL® Alloy 783: An Oxidation-Resistant, Low Expansion Superalloy for Gas Turbine Applications , 1998 .

[21]  Leonhard Fottner,et al.  Surface Roughness Effects on Turbine Blade Aerodynamics , 2005 .

[22]  J. Denton Loss Mechanisms in Turbomachines , 1993 .

[23]  Budugur Lakshminarayana,et al.  Three-Dimensional Flowfield Downstream of an Axial-Flow Turbine Rotor , 1999 .

[24]  B. Lakshminarayana,et al.  Navier-Stokes analysis of turbine flowfield and external heat transfer , 1995 .

[25]  D. G. Ainley,et al.  A Method of Performance Estimation for Axial-Flow Turbines , 1951 .

[26]  Steen A. Sjolander,et al.  Effects of Tip Clearance on Blade Loading in a Planar Cascade of Turbine Blades , 1986 .

[27]  O. E. Baljé,et al.  Turbomachines—A Guide to Design Selection and Theory , 1981 .

[28]  Steen A. Sjolander,et al.  Effects of Simulated Rotation on Tip Leakage in a Planar Cascade of Turbine Blades: Part I—Tip Gap Flow , 1992 .

[29]  Budugur Lakshminarayana,et al.  Computational Modeling of Three-Dimensional Endwall Flow Through a Turbine Rotor Cascade With Strong Secondary Flows , 1996 .

[30]  Ronald R. Cairo,et al.  A Scientific Approach to the Process Development Bonded Attachments for High-Speed Rotor Application , 2002 .

[31]  Budugur Lakshminarayana,et al.  Tip clearance effects in a turbine rotor : Part I : Pressure field and loss , 2001 .

[32]  R. Vásquez,et al.  High Stage Loading Low Pressure Turbines: A New Proposal for an Efficiency Chart , 2003 .

[33]  K. L. Nichol Assessment of current turbine engine high cycle fatigue test methods , 2003 .

[34]  S. S. Manson,et al.  A linear time-temperature relation for extrapolation of creep and stress-rupture data , 1953 .

[35]  Kyung Chun Ham,et al.  Fatigue Analysis of Vane Components for Gas Turbine Engine , 2000 .

[36]  I. Salam,et al.  Creep-fatigue failure of an aero engine turbine blades , 2002 .

[37]  Louis J. Ghosn,et al.  A Computer Code for Gas Turbine Engine Weight and Disk Life Estimation , 2002 .

[38]  David Japikse,et al.  Introduction to Turbomachinery , 1994 .

[39]  G. F. Harrison,et al.  Fatigue life prediction and failure analysis of a gas turbine disc using the finite-element method , 2004 .

[40]  C. H. Sieverding,et al.  Recent Progress in the Understanding of Basic Aspects of Secondary Flows in Turbine Blade Passages , 1985 .

[41]  P. Mangonon,et al.  The principles of materials selection for engineering design , 1998 .

[42]  J. A. H. Graham Investigation of a Tip Clearance Cascade in a Water Analogy Rig , 1986 .

[43]  Junqiang Zhu,et al.  Improved Profile Loss and Deviation Correlations for Axial-Turbine Blade Rows , 2005 .

[44]  S. A. Sjolander,et al.  Overview of tip-clearance effects in axial turbines , 1997 .

[45]  N. C. Baines,et al.  The aerodynamic loading of radial and mixed-flow turbines , 1994 .

[46]  J. Dunham,et al.  Improvements to the Ainley-Mathieson Method of Turbine Performance Prediction , 1970 .

[47]  Keith M. Boyer,et al.  Using “Design Envelopes” to Aid in the Preliminary Design of Rotating Turbomachinery , 2004 .

[48]  B. K. Subhas,et al.  Dimensional instability studies in machining of Inconel 718 nickel based superalloy as applied to aerogas turbine components , 2000 .

[49]  U. Okapuu,et al.  A Mean Line Prediction Method for Axial Flow Turbine Efficiency , 1982 .

[50]  R. E. Haigh,et al.  Analysis of Centrifugal Stresses in Turbine Wheels , 1963 .

[51]  S. F. Smith A Simple Correlation of Turbine Efficiency , 1965, The Journal of the Royal Aeronautical Society.

[52]  M. Ashby A first report on deformation-mechanism maps , 1972 .

[53]  J. Szwedowicz,et al.  Approach to Unidirectional Coupled CFD–FEM Analysis of Axial Turbocharger Turbine Blades , 2002 .

[54]  M. R. Horne,et al.  Formulas for stress and strain: R. J. Roark : (Third Edition). McGraw-Hill Publishing Co. Ltd. 1954. xiii + 381 pp. Tables XIX. 53s. 6d , 1954 .