Adjoint-based optimal control using meshfree discretizations

The paper at hand presents a combination of optimal control approaches for PDEs with meshless discretizations. Applying a classical Lagrangian type particle method to optimization problems with hyperbolic constraints, several adjoint-based strategies differing in the sequential order of optimization and discretization of the Lagrangian or Eulerian problem formulation are proposed and compared. The numerical results confirm the theoretically predicted independence principle of the optimization approaches and show the expected convergence behavior. Moreover, they exemplify the superiority of meshless methods over the conventional mesh-based approaches for the numerical handling and optimization of problems with time-dependent geometries and freely moving boundaries.

[1]  H. Neunzert,et al.  Particle Methods for the Boltzmann Equation , 1995, Acta Numerica.

[2]  G. Dilts MOVING-LEAST-SQUARES-PARTICLE HYDRODYNAMICS-I. CONSISTENCY AND STABILITY , 1999 .

[3]  Barry Koren,et al.  Adjoint-based aerodynamic shape optimization on unstructured meshes , 2007, J. Comput. Phys..

[4]  T. Belytschko,et al.  Element‐free Galerkin methods , 1994 .

[5]  I. Babuska,et al.  The partition of unity finite element method: Basic theory and applications , 1996 .

[6]  P. Raviart An analysis of particle methods , 1985 .

[7]  Michael Griebel,et al.  A Particle-Partition of Unity Method for the Solution of Elliptic, Parabolic, and Hyperbolic PDEs , 2000, SIAM J. Sci. Comput..

[8]  Nicole Marheineke,et al.  Mesh-less method for homogeneous handling of fiber-fluid interactions , 2003 .

[9]  P. Lancaster,et al.  Surfaces generated by moving least squares methods , 1981 .

[10]  J. Monaghan,et al.  Smoothed particle hydrodynamics: Theory and application to non-spherical stars , 1977 .

[11]  P. Raviart,et al.  Numerical Approximation of Hyperbolic Systems of Conservation Laws , 1996, Applied Mathematical Sciences.

[12]  Joseph J Monaghan,et al.  An introduction to SPH , 1987 .

[13]  Huafeng Liu,et al.  Meshfree particle method , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[14]  Sudarshan Tiwari,et al.  Modeling of two-phase flows with surface tension by finite pointset method (FPM) , 2007 .

[15]  Mark A Fleming,et al.  Meshless methods: An overview and recent developments , 1996 .

[16]  Elaine S. Oran,et al.  Numerical Simulation of Reactive Flow , 1987 .

[17]  G. Sod Numerical methods in fluid dynamics , 1985 .

[18]  I. Babuska,et al.  The Partition of Unity Method , 1997 .

[19]  Wing Kam Liu,et al.  Reproducing kernel particle methods , 1995 .

[20]  Paul R. Woodward,et al.  Extension of the Piecewise Parabolic Method to Multidimensional Ideal Magnetohydrodynamics , 1994 .

[21]  Michael Hinze,et al.  Optimal control of the free boundary in a two‐phase Stefan problem with flow driven by convection , 2007 .

[22]  Kenichi Nanbu,et al.  Direct simulation scheme derived from the Boltzmann equation. I - Monocomponent gases. II - Multicom , 1980 .