Subspace based model identification for missing data

[1]  P. A. Taylor,et al.  Missing data methods in PCA and PLS: Score calculations with incomplete observations , 1996 .

[2]  Bart De Moor,et al.  N4SID: Subspace algorithms for the identification of combined deterministic-stochastic systems , 1994, Autom..

[3]  Jay H. Lee,et al.  Building inferential prediction models of batch processes using subspace identification , 2003 .

[4]  Biao Huang,et al.  Variational Bayesian approach for ARX systems with missing observations and varying time-delays , 2018, Autom..

[5]  Therese D. Pigott,et al.  A Review of Methods for Missing Data , 2001 .

[6]  Robert D. Nowak,et al.  K-subspaces with missing data , 2012, 2012 IEEE Statistical Signal Processing Workshop (SSP).

[7]  Bart De Moor,et al.  A unifying theorem for three subspace system identification algorithms , 1995, Autom..

[8]  S. Ding,et al.  Closed-loop subspace identification: an orthogonal projection approach , 2004 .

[9]  M. Moonen,et al.  On- and off-line identification of linear state-space models , 1989 .

[10]  Wallace E. Larimore,et al.  Statistical optimality and canonical variate analysis system identification , 1996, Signal Process..

[11]  Ivan Markovsky Exact system identification with missing data , 2013, 52nd IEEE Conference on Decision and Control.

[12]  John F. MacGregor,et al.  Process monitoring and diagnosis by multiblock PLS methods , 1994 .

[13]  Si-Zhao Joe Qin,et al.  An overview of subspace identification , 2006, Comput. Chem. Eng..

[14]  Esat Alpay,et al.  Polymerisation of methyl methacrylate in a pilot-scale tubular reactor: modelling and experimental studies , 2003 .

[15]  Ali Cinar,et al.  Stable recursive canonical variate state space modeling for time-varying processes , 2015 .

[16]  Zhang Liu,et al.  Nuclear norm system identification with missing inputs and outputs , 2013, Syst. Control. Lett..

[17]  J. Macgregor,et al.  Control of batch product quality by trajectory manipulation using latent variable models , 2004 .

[18]  H. Dodeen Effectiveness of Valid Mean Substitution in Treating Missing Data in Attitude Assessment , 2003 .

[19]  U. Kruger,et al.  Dynamic Principal Component Analysis Using Subspace Model Identification , 2005, ICIC.

[20]  D. Massart,et al.  Dealing with missing data , 2001 .

[21]  Jun Liang,et al.  Multi-loop nonlinear internal model controller design under nonlinear dynamic PLS framework using ARX-neural network model , 2012 .

[22]  Biao Huang,et al.  Performance-Driven Distributed PCA Process Monitoring Based on Fault-Relevant Variable Selection and Bayesian Inference , 2016, IEEE Transactions on Industrial Electronics.

[23]  D. Bennett How can I deal with missing data in my study? , 2001, Australian and New Zealand journal of public health.

[24]  Robert D. Nowak,et al.  High-Rank Matrix Completion and Subspace Clustering with Missing Data , 2011, ArXiv.

[25]  Jay H. Lee,et al.  Iterative learning control-based batch process control technique for integrated control of end product properties and transient profiles of process variables , 2003 .

[26]  Prashant Mhaskar,et al.  Data-Driven Modeling and Quality Control of Variable Duration Batch Processes with Discrete Inputs , 2017 .

[27]  Hyun-Ku Rhee,et al.  Application of adaptive model-predictive control to a batch MMA polymerization reactor , 1998 .

[28]  M. Verhaegen Subspace model identification Part 2. Analysis of the elementary output-error state-space model identification algorithm , 1992 .

[29]  Prashant Mhaskar,et al.  Subspace identification for data‐driven modeling and quality control of batch processes , 2016 .

[30]  Iqbal M. Mujtaba,et al.  Evaluation of neural networks-based controllers in batch polymerisation of methyl methacrylate , 2008, Neurocomputing.