Recombination between heterologous human acrocentric chromosomes

The short arms of the human acrocentric chromosomes 13, 14, 15, 21, and 22 share large homologous regions, including the ribosomal DNA repeats and extended segmental duplications (Floutsakou et al. 2013; van Sluis et al. 2019). While the complete assembly of these regions in the Telomere-to-Telomere consortium’s CHM13 provided a model of their homology (Nurk et al. 2022), it remained unclear if these patterns were ancestral or maintained by ongoing recombination exchange. Here, we show that acrocentric chromosomes contain pseudo-homologous regions (PHRs) indicative of recombination between non-homologs. Considering an all-to-all comparison of the high-quality human pangenome from the Human Pangenome Reference Consortium (HPRC) (Liao et al. 2022), we find that contigs from all of the acrocentric short arms form a community similar to those formed by single chromosomes or the sex chromosome pair. A variation graph (Garrison et al. 2018) constructed from centromere-spanning acrocentric contigs indicates the presence of regions where most contigs appear nearly identical between heterologous CHM13 acrocentrics. Except on chromosome 15, we observe faster decay of linkage disequilibrium in the PHRs than in the corresponding short and long arms, indicating higher rates of recombination (N. Li and Stephens 2003; Huttley et al. 1999). The PHRs include sequences previously shown to lie at the breakpoint of Robertsonian translocations (Jarmuz-Szymczak et al. 2014), and we show that their arrangement is compatible with crossover in inverted duplications on chromosomes 13, 14, and 21. The ubiquity of signals of recombination between heterologous chromosomes seen in the HPRC draft pangenome’s acrocentric assemblies suggests that these shared sequences form the basis for recurrent Robertsonian translocations, providing sequence and population-based confirmation of hypotheses first developed cytogenetically fifty years ago (Hamerton et al. 1975).

[1]  William T. Harvey,et al.  The complete sequence of a human Y chromosome , 2022, bioRxiv.

[2]  Jordan M. Eizenga,et al.  Optimal gap-affine alignment in O(s) space , 2022, bioRxiv.

[3]  William T. Harvey,et al.  A draft human pangenome reference , 2022, bioRxiv.

[4]  Glennis A. Logsdon,et al.  Verkko: telomere-to-telomere assembly of diploid chromosomes , 2022, bioRxiv.

[5]  Ryan L. Collins,et al.  A genome-wide mutational constraint map quantified from variation in 76,156 human genomes , 2022, bioRxiv.

[6]  Erik K. Garrison,et al.  Unbiased pangenome graphs , 2022, bioRxiv.

[7]  Robert S. Harris,et al.  The minimizer Jaccard estimator is biased and inconsistent , 2022, bioRxiv.

[8]  Jordan M. Eizenga,et al.  Pangenomics enables genotyping of known structural variants in 5202 diverse genomes , 2021, Science.

[9]  S. Nahnsen,et al.  ODGI: understanding pangenome graphs , 2021, bioRxiv.

[10]  Mitchell R. Vollger,et al.  From telomere to telomere: the transcriptional and epigenetic state of human repeat elements , 2021, bioRxiv.

[11]  Aaron M. Streets,et al.  The complete sequence of a human genome , 2021, bioRxiv.

[12]  David L. Wheeler,et al.  Repeated strand invasion and extensive branch migration are hallmarks of meiotic recombination , 2021, bioRxiv.

[13]  M. Perucho,et al.  Somatic Hypomethylation of Pericentromeric SST1 Repeats and Tetraploidization in Human Colorectal Cancer Cells , 2021, bioRxiv.

[14]  William T. Harvey,et al.  The structure, function and evolution of a complete human chromosome 8 , 2020, Nature.

[15]  Voichita D. Marinescu,et al.  Progressive Cactus is a multiple-genome aligner for the thousand-genome era , 2020, Nature.

[16]  Heng Li,et al.  The design and construction of reference pangenome graphs with minigraph , 2020, Genome biology.

[17]  Miquel Moreto,et al.  Fast gap-affine pairwise alignment using the wavefront algorithm , 2020, Bioinformatics.

[18]  Jordan M. Eizenga,et al.  Pangenome Graphs. , 2020, Annual review of genomics and human genetics.

[19]  Joseph G. Mccarter,et al.  Human NORs, comprising rDNA arrays and functionally conserved distal elements, are located within dynamic chromosomal regions , 2019, Genes & development.

[20]  Tobias Marschall,et al.  GraphAligner: rapid and versatile sequence-to-graph alignment , 2019, Genome Biology.

[21]  B. McStay,et al.  Nucleolar DNA Double-Strand Break Responses Underpinning rDNA Genomic Stability. , 2019, Trends in genetics : TIG.

[22]  Glenn Hickey,et al.  Genotyping structural variants in pangenome graphs using the vg toolkit , 2019, Genome Biology.

[23]  Brian E. Cade,et al.  Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program , 2019, Nature.

[24]  Vincent A. Traag,et al.  From Louvain to Leiden: guaranteeing well-connected communities , 2018, Scientific Reports.

[25]  William Jones,et al.  Variation graph toolkit improves read mapping by representing genetic variation in the reference , 2018, Nature Biotechnology.

[26]  K. Paigen,et al.  PRDM9 and Its Role in Genetic Recombination. , 2018, Trends in genetics : TIG.

[27]  J. Bartek,et al.  Nucleolus as an emerging hub in maintenance of genome stability and cancer pathogenesis , 2018, Oncogene.

[28]  E. Greene,et al.  A change of view: homologous recombination at single-molecule resolution , 2017, Nature Reviews Genetics.

[29]  S. Myers,et al.  A map of human PRDM9 binding provides evidence for novel behaviors of PRDM9 and other zinc-finger proteins in meiosis , 2017, eLife.

[30]  Annabel C Beichman,et al.  Comparison of Single Genome and Allele Frequency Data Reveals Discordant Demographic Histories , 2017, G3: Genes, Genomes, Genetics.

[31]  Jordan M. Eizenga,et al.  Genome graphs and the evolution of genome inference , 2017, bioRxiv.

[32]  Glenn Hickey,et al.  Superbubbles, Ultrabubbles and Cacti , 2017, bioRxiv.

[33]  Andreu Alibés,et al.  Helicase Lymphoid-Specific Enzyme Contributes to the Maintenance of Methylation of SST1 Pericentromeric Repeats That Are Frequently Demethylated in Colon Cancer and Associate with Genomic Damage , 2016, Epigenomes.

[34]  Mridula Nambiar,et al.  Repression of harmful meiotic recombination in centromeric regions. , 2016, Seminars in cell & developmental biology.

[35]  L. Boykin,et al.  Rooting Trees, Methods for , 2016, Encyclopedia of Evolutionary Biology.

[36]  Melissa A. Wilson Sayres,et al.  Genetic Diversity on the Human X Chromosome Does Not Support a Strict Pseudoautosomal Boundary , 2015, Genetics.

[37]  B. McStay,et al.  A localized nucleolar DNA damage response facilitates recruitment of the homology-directed repair machinery independent of cell cycle stage , 2015, Genes & development.

[38]  N. Kleckner,et al.  Recombination, Pairing, and Synapsis of Homologs during Meiosis. , 2015, Cold Spring Harbor perspectives in biology.

[39]  F. Zhang,et al.  Correlation between frequency of non-allelic homologous recombination and homology properties: evidence from homology-mediated CNV mutations in the human genome. , 2015, Human molecular genetics.

[40]  L. Shaffer,et al.  Narrowing the localization of the region breakpoint in most frequent Robertsonian translocations , 2014, Chromosome Research.

[41]  Austen R. D. Ganley,et al.  The shared genomic architecture of human nucleolar organizer regions , 2013, Genome research.

[42]  M. Arenas The importance and application of the ancestral recombination graph , 2013, Front. Genet..

[43]  Ken Cherven,et al.  Network Graph Analysis and Visualization with Gephi , 2013 .

[44]  P. Padakannaya,et al.  Copy number variation-based polymorphism in a new pseudoautosomal region 3 (PAR3) of a human X-chromosome-transposed region (XTR) in the Y chromosome , 2013, Functional & Integrative Genomics.

[45]  Stanley Maloy,et al.  Brenner's Encyclopedia of Genetics: Second Edition , 2013 .

[46]  William Stafford Noble,et al.  FIMO: scanning for occurrences of a given motif , 2011, Bioinform..

[47]  Takehiko Kobayashi Regulation of ribosomal RNA gene copy number and its role in modulating genome integrity and evolutionary adaptability in yeast , 2011, Cellular and Molecular Life Sciences.

[48]  B. Chadwick,et al.  Expression, tandem repeat copy number variation and stability of four macrosatellite arrays in the human genome , 2010, BMC Genomics.

[49]  S. Keeney,et al.  Comprehensive, fine-scale dissection of homologous recombination outcomes at a hot spot in mouse meiosis. , 2010, Molecular cell.

[50]  Aaron R. Quinlan,et al.  BIOINFORMATICS APPLICATIONS NOTE , 2022 .

[51]  Francesc Calafell,et al.  Decay of linkage disequilibrium within genes across HGDP-CEPH human samples: most population isolates do not show increased LD , 2009, BMC Genomics.

[52]  Mathieu Bastian,et al.  Gephi: An Open Source Software for Exploring and Manipulating Networks , 2009, ICWSM.

[53]  G. McVean,et al.  Estimating Meiotic Gene Conversion Rates From Population Genetic Data , 2007, Genetics.

[54]  Manuel A. R. Ferreira,et al.  PLINK: a tool set for whole-genome association and population-based linkage analyses. , 2007, American journal of human genetics.

[55]  B. Morris,et al.  The Human Pseudoautosomal Region (PAR): Origin, Function and Future. , 2007, Current Genomics.

[56]  David L. Steffen,et al.  The DNA sequence of the human X chromosome , 2005, Nature.

[57]  M. Ehrlich,et al.  A DNA repeat, NBL2, is hypermethylated in some cancers but hypomethylated in others , 2005, Cancer biology & therapy.

[58]  J. Pincheira,et al.  Number and Nuclear Localisation of Nucleoli in Mammalian Spermatocytes , 2004, Genetica.

[59]  Theresa Naluai-Cecchini,et al.  FISHing for acrocentric associations between chromosomes 14 and 21 in human oogenesis. , 2004, American journal of obstetrics and gynecology.

[60]  H. Willard,et al.  Organization and evolution of an alpha satellite DNA subset shared by human chromosomes 13 and 21 , 1993, Journal of Molecular Evolution.

[61]  S. Berríos,et al.  Nuclear architecture of human pachytene spermatocytes: quantitative analysis of associations between nucleolar and XY bivalents , 1990, Human Genetics.

[62]  B. Mcclintock The relation of a particular chromosomal element to the development of the nucleoli in Zea mays , 2004, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[63]  M. Stephens,et al.  Modeling linkage disequilibrium and identifying recombination hotspots using single-nucleotide polymorphism data. , 2003, Genetics.

[64]  L. Shaffer,et al.  Mosaicism in a patient with Down syndrome reveals post‐fertilization formation of a robertsonian translocation and isochromosome , 2003, American journal of medical genetics. Part A.

[65]  J. Pritchard,et al.  Linkage disequilibrium in humans: models and data. , 2001, American journal of human genetics.

[66]  J. Sylvester,et al.  Human rDNA: evolutionary patterns within the genes and tandem arrays derived from multiple chromosomes. , 2001, Genomics.

[67]  International Human Genome Sequencing Consortium Initial sequencing and analysis of the human genome , 2001, Nature.

[68]  M. Carrington,et al.  A scan for linkage disequilibrium across the human genome. , 1999, Genetics.

[69]  S. Schwartz,et al.  Evidence for structural heterogeneity from molecular cytogenetic analysis of dicentric Robertsonian translocations. , 1996, American journal of human genetics.

[70]  O. Zuffardi,et al.  Mitotic recombination among acrocentric chromosomes' short arms , 1996, Annals of human genetics.

[71]  B. Vissel,et al.  Evolution of alpha-satellite DNA on human acrocentric chromosomes. , 1989, Genomics.

[72]  S. Kolvraa,et al.  A subfamily of alphoid repetitive DNA shared by the NOR-bearing human chromosomes 14 and 22. , 1988, Genomics.

[73]  B. Vissel,et al.  Homologous alpha satellite sequences on human acrocentric chromosomes with selectivity for chromosomes 13, 14 and 21: implications for recombination between nonhomologues and Robertsonian translocations. , 1988, Nucleic acids research.

[74]  S. O’Brien,et al.  A new moderately repetitive DNA sequence family of novel organization. , 1987, Nucleic acids research.

[75]  C. Bostock,et al.  Homologous subfamilies of human alphoid repetitive DNA on different nucleolus organizing chromosomes. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[76]  P. Devilee,et al.  Two subsets of human alphoid repetitive DNA show distinct preferential localization in the pericentric regions of chromosomes 13, 18, and 21. , 1986, Cytogenetics and cell genetics.

[77]  P. Holm,et al.  Human meiosis I. The human pachytene karyotype analyzed by three dimensional reconstruction of the synaptonemal complex , 1977 .

[78]  J. Hamerton,et al.  A cytogenetic survey of 14,069 newborn infants. I. Incidence of chromosome abnormalities. , 1976, Clinical genetics.

[79]  J. Hamerton,et al.  A cytogenetic survey of 14,069 newborn infants , 1975 .

[80]  A. Henderson,et al.  Letter: Ribosomal DNA connectives between human acrocentric chromosomes. , 1973, Nature.

[81]  M. Spittle,et al.  Functional Implications of Differential Chromosome Banding , 2006 .

[82]  P. Roberts Difference in the Behaviour of Eu- and Hetero-chromatin: Crossing-over , 1965, Nature.