Quantum fault tolerance in small experiments

I discuss a variety of issues relating to near-future experiments demonstrating fault-tolerant quantum computation. I describe a family of fault-tolerant quantum circuits that can be performed with 5 qubits arranged on a ring with nearest-neighbor interactions. I also present a criterion whereby we can say that an experiment has succeeded in demonstrating fault tolerance. Finally, I discuss the possibility of using future fault-tolerant experiments to answer important questions about the interaction of fault-tolerant protocols with real experimental errors.

[1]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[2]  Shor,et al.  Good quantum error-correcting codes exist. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[3]  Peter W. Shor,et al.  Fault-tolerant quantum computation , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[4]  A. Steane Multiple-particle interference and quantum error correction , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[5]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[6]  Laflamme,et al.  Perfect Quantum Error Correcting Code. , 1996, Physical review letters.

[7]  Vaidman,et al.  Error prevention scheme with four particles. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[8]  T. Beth,et al.  Codes for the quantum erasure channel , 1996, quant-ph/9610042.

[9]  А Е Китаев,et al.  Квантовые вычисления: алгоритмы и исправление ошибок@@@Quantum computations: algorithms and error correction , 1997 .

[10]  Dorit Aharonov,et al.  Fault-tolerant quantum computation with constant error , 1997, STOC '97.

[11]  D. Gottesman Theory of fault-tolerant quantum computation , 1997, quant-ph/9702029.

[12]  J. Preskill Reliable quantum computers , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[13]  E. Knill,et al.  Resilient quantum computation: error models and thresholds , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[14]  E. Knill,et al.  Implementation of the Five Qubit Error Correction Benchmark , 2001, quant-ph/0101034.

[15]  J. Preskill,et al.  Topological quantum memory , 2001, quant-ph/0110143.

[16]  A. Kitaev Fault tolerant quantum computation by anyons , 1997, quant-ph/9707021.

[17]  D. Poulin Stabilizer formalism for operator quantum error correction. , 2005, Physical review letters.

[18]  John Preskill,et al.  Quantum accuracy threshold for concatenated distance-3 codes , 2006, Quantum Inf. Comput..

[19]  D. Bacon Operator quantum error-correcting subsystems for self-correcting quantum memories , 2005, quant-ph/0506023.

[20]  Robert Raussendorf,et al.  Fault-tolerant quantum computation with high threshold in two dimensions. , 2007, Physical review letters.

[21]  Jian-Wei Pan,et al.  Experimental quantum coding against qubit loss error , 2008, Proceedings of the National Academy of Sciences.

[22]  John Preskill,et al.  Fault-tolerant quantum computation against biased noise , 2007, 0710.1301.

[23]  Dieter Suter,et al.  Experimental implementation of encoded logical qubit operations in a perfect quantum error correcting code. , 2012, Physical review letters.

[24]  T. Monz,et al.  Experimental Quantum Computations on a Topologically Encoded Qubit , 2014 .

[25]  Andrew W. Cross,et al.  Detecting arbitrary quantum errors via stabilizer measurements on a sublattice of the surface code , 2014, 1410.6419.

[26]  M. S. Tame,et al.  Experimental demonstration of a graph state quantum error-correction code , 2014, Nature Communications.

[27]  Krysta Marie Svore,et al.  Low-distance Surface Codes under Realistic Quantum Noise , 2014, ArXiv.

[28]  James R. Wootton,et al.  Noise thresholds for minimal surface code experiments , 2016 .

[29]  Emanuel Knill,et al.  High Fidelity Universal Gate Set for 9Be+ Ion Qubits | NIST , 2016 .