Study of cyclic performance of V-Ti-Cr alloys employed for hydrogen compressor

[1]  M. Balcerzak Structure and hydrogen storage properties of mechanically alloyed Ti-V alloys , 2017 .

[2]  Ankur Jain,et al.  Development of vanadium based hydrogen storage material: A review , 2017 .

[3]  Seemita Banerjee,et al.  Thermodynamics, kinetics and microstructural evolution of Ti0.43Zr0.07Cr0.25V0.25 alloy upon hydrogenation , 2017 .

[4]  Pratibha Sharma,et al.  Effect of doping and particle size on hydrogen absorption properties of BCC solid solution 52Ti-12V-36Cr , 2017 .

[5]  L. Chown,et al.  Influence of Fe on hydrogen storage properties of V-rich ternary alloys , 2016 .

[6]  S. Bharadwaj,et al.  Hydrogen storage properties of Ti0.32Cr0.43V0.25 alloy and its composite with TiMn2 , 2015 .

[7]  Chia-Chieh Shen,et al.  Cyclic hydrogenation stability of γ-hydrides for Ti25V35Cr40 alloys doped with carbon , 2015 .

[8]  Sanjay Kumar,et al.  Tailoring the hydrogen desorption thermodynamics of V2H by alloying additives , 2015 .

[9]  Chia-Chieh Shen,et al.  Passivation and reactivation of Ti25V35Cr40 hydrides by cycling with impure hydrogen gas , 2015 .

[10]  Bruno G. Pollet,et al.  Metal hydride hydrogen compressors: A review , 2014 .

[11]  V. Verbetsky,et al.  Absorption of hydrogen by V-Mo and V-Mo-Ti alloys , 2014, Inorganic Materials: Applied Research.

[12]  S. Suwarno,et al.  The effects of rapid solidification on microstructure and hydrogen sorption properties of binary BCC Ti–V alloys , 2014 .

[13]  E. Akiba,et al.  Lattice defects in V-Ti BCC alloys before and after hydrogenation , 2013 .

[14]  H. Ogawa,et al.  Origin of Degradation in the Reversible Hydrogen Storage Capacity of V1–xTix Alloys from the Atomic Pair Distribution Function Analysis , 2013 .

[15]  A. Itoh,et al.  Effect of partial niobium and iron substitution on short-term cycle durability of hydrogen storage Ti–Cr–V alloys , 2013 .

[16]  A. V. Tatarintsev,et al.  Hydrogen sorption properties of V1 − xCrx (x = 0.1–0.5) alloys , 2013, Inorganic Materials.

[17]  Sanjay Kumar,et al.  Effect of aluminum on solubility and β phase stability of vanadium–hydrogen system , 2012 .

[18]  K. Roh,et al.  Effect of particle size and microstructure on the hydrogen storage property in a V–Ti–Cr solid solution system , 2012 .

[19]  Sanjay Kumar,et al.  Variation of activation energy of hydrogen absorption of vanadium as a function of aluminum , 2012 .

[20]  S. Ohnuki,et al.  Plastic bag method for active sample loading into transmission electron microscope. , 2011, Journal of electron microscopy.

[21]  M. Ishikiriyama,et al.  Improvement of cyclic durability of Ti–Cr–V alloy by Fe substitution , 2011 .

[22]  M. Tsukahara Hydrogenation Properties of Vanadium-Based Alloys with Large Hydrogen Storage Capacity , 2011 .

[23]  G. Chen,et al.  The influence of alloy elements on the hydrogen storage properties in vanadium-based solid solution alloys , 2008 .

[24]  F. Heurtaux,et al.  Hydrogenation properties and crystal structure of the single BCC (Ti0.355V0.645)100−xMx alloys with M = Mn, Fe, Co, Ni (x = 7, 14 and 21) , 2007 .

[25]  和也 久保,et al.  Ti-Cr-V 系合金の水素化サイクル特性に及ぼす微細構造の影響 , 2007 .

[26]  K. Kubo,et al.  Improvement of cyclic durability of BCC structured Ti–Cr–V alloys , 2005 .

[27]  M. V. Lototsky,et al.  Vanadium-based BCC alloys: phase-structural characteristics and hydrogen sorption properties , 2005 .

[28]  R. Bowman Development of metal hydride beds for sorption cryocoolers in space applications , 2003 .

[29]  T. Tamura,et al.  Protium absorption properties and protide formations of Ti-Cr-V alloys , 2003 .

[30]  Jai-Young Lee,et al.  A study on the improvement of the cyclic durability by Cr substitution in V–Ti alloy and surface modification by the ball-milling process , 2003 .

[31]  T. Tamura,et al.  Effect of absorption-desorption cycles on structure and stability of protides in Ti-Cr-V alloys , 2002 .

[32]  B. Fultz,et al.  Metallic Hydrides I: Hydrogen Storage and Other Gas- Phase Applications , 2002 .

[33]  H. Yukawa,et al.  Alloying effects on the stability of vanadium hydrides , 2002 .

[34]  G. Sandrock A panoramic overview of hydrogen storage alloys from a gas reaction point of view , 1999 .

[35]  E. Akiba,et al.  The hydrogen storage characteristics of Ti–Cr–V alloys , 1999 .

[36]  P. Dantzer,et al.  Metal-Hydride technology: A critical review , 1997 .

[37]  G. Sandrock Applications of Hydrides , 1995 .

[38]  B. Fultz,et al.  Effects of Thermal Cycling on the Physical Properties of VHx* , 1993 .

[39]  J. R. Phillips,et al.  Evaluation of metal hydride compressors for applications in Joule-Thomson cryocoolers☆ , 1992 .

[40]  A. Kagawa,et al.  Absorption of hydrogen by vanadium-rich VTi-based alloys , 1991 .

[41]  S. Ono,et al.  The reaction of hydrogen with alloys of vanadium and titanium , 1980 .

[42]  J. Lynch,et al.  The absorption of hydrogen by binary vanadium-chromium alloys , 1978 .

[43]  J. Reilly,et al.  A New Laboratory Gas Circulation Pump for Intermediate Pressures , 1971 .