Interactions between the spatial and temporal stimulus factors that influence multisensory integration in human performance

[1]  Ryan A. Stevenson,et al.  Visuo-haptic Neuronal Convergence Demonstrated with an Inversely Effective Pattern of BOLD Activation , 2012, Journal of Cognitive Neuroscience.

[2]  David B. Pisoni,et al.  Discrete neural substrates underlie complementary audiovisual speech integration processes , 2011, NeuroImage.

[3]  Albert R. Powers,et al.  Binding of sights and sounds: Age-related changes in multisensory temporal processing , 2011, Neuropsychologia.

[4]  Nicholas D. Higgs,et al.  Bones as biofuel: a review of whale bone composition with implications for deep-sea biology and palaeoanthropology , 2011, Proceedings of the Royal Society B: Biological Sciences.

[5]  Neil W. Roach,et al.  Asynchrony adaptation reveals neural population code for audio-visual timing , 2010, Proceedings of the Royal Society B: Biological Sciences.

[6]  J. Vroomen,et al.  Perception of intersensory synchrony: A tutorial review , 2010, Attention, perception & psychophysics.

[7]  W. Stone,et al.  An extended multisensory temporal binding window in autism spectrum disorders , 2010, Experimental Brain Research.

[8]  David B. Pisoni,et al.  Neural processing of asynchronous audiovisual speech perception , 2010, NeuroImage.

[9]  Thomas W James,et al.  Enhanced effectiveness in visuo‐haptic object‐selective brain regions with increasing stimulus salience , 2009, Human brain mapping.

[10]  Mark T. Wallace,et al.  Spatial receptive field organization of multisensory neurons and its impact on multisensory interactions , 2009, Hearing Research.

[11]  Albert R. Powers,et al.  Perceptual Training Narrows the Temporal Window of Multisensory Binding , 2009, The Journal of Neuroscience.

[12]  Peter König,et al.  Visual stimulus locking of EEG is modulated by temporal congruency of auditory stimuli , 2009, Experimental Brain Research.

[13]  Daniel Senkowski,et al.  Intermodal attention affects the processing of the temporal alignment of audiovisual stimuli , 2009, Experimental Brain Research.

[14]  T. James,et al.  An additive-factors design to disambiguate neuronal and areal convergence: measuring multisensory interactions between audio, visual, and haptic sensory streams using fMRI , 2009, Experimental Brain Research.

[15]  David W. Royal,et al.  Spatiotemporal architecture of cortical receptive fields and its impact on multisensory interactions , 2009, Experimental Brain Research.

[16]  Ryan A. Stevenson,et al.  Audiovisual integration in human superior temporal sulcus: Inverse effectiveness and the neural processing of speech and object recognition , 2009, NeuroImage.

[17]  Hans Colonius,et al.  When a high-intensity “distractor” is better then a low-intensity one: Modeling the effect of an auditory or tactile nontarget stimulus on visual saccadic reaction time , 2008, Brain Research.

[18]  Miriam Reiner,et al.  Multisensory enhancement: gains in choice and in simple response times , 2008, Experimental Brain Research.

[19]  David W. Royal,et al.  Spatial heterogeneity of cortical receptive fields and its impact on multisensory interactions. , 2008, Journal of neurophysiology.

[20]  Daniel Senkowski,et al.  Good times for multisensory integration: Effects of the precision of temporal synchrony as revealed by gamma-band oscillations , 2007, Neuropsychologia.

[21]  D. Poeppel,et al.  Temporal window of integration in auditory-visual speech perception , 2007, Neuropsychologia.

[22]  John J. Foxe,et al.  Impaired multisensory processing in schizophrenia: Deficits in the visual enhancement of speech comprehension under noisy environmental conditions , 2007, Schizophrenia Research.

[23]  John J. Foxe,et al.  Do you see what I am saying? Exploring visual enhancement of speech comprehension in noisy environments. , 2006, Cerebral cortex.

[24]  Rainer Goebel,et al.  The effect of temporal asynchrony on the multisensory integration of letters and speech sounds. , 2006, Cerebral cortex.

[25]  Ryan A. Stevenson,et al.  Superadditive BOLD activation in superior temporal sulcus with threshold non-speech objects , 2007, Experimental Brain Research.

[26]  Steven R. Holloway,et al.  Perceptual Learning of Motion Leads to Faster Flicker Perception , 2006, PloS one.

[27]  C. Spence,et al.  Audiovisual synchrony perception for music, speech, and object actions , 2006, Brain Research.

[28]  D. Pisoni,et al.  Auditory-visual speech perception and synchrony detection for speech and nonspeech signals. , 2006, The Journal of the Acoustical Society of America.

[29]  A. Diederich,et al.  The race model inequality: interpreting a geometric measure of the amount of violation. , 2006, Psychological review.

[30]  Jean Vroomen,et al.  The role of spatial disparity and hemifields in audio-visual temporal order judgments , 2005, Experimental Brain Research.

[31]  Lee M. Miller,et al.  Behavioral/systems/cognitive Perceptual Fusion and Stimulus Coincidence in the Cross- Modal Integration of Speech , 2022 .

[32]  C. Spence,et al.  Audio-visual simultaneity judgments , 2005, Perception & psychophysics.

[33]  C. Spence,et al.  Audiovisual prior entry , 2003, Neuroscience Letters.

[34]  Ernst Pöppel,et al.  Sensory integration within temporally neutral systems states: A hypothesis , 1990, Naturwissenschaften.

[35]  M. T. Wallace,et al.  Visual, auditory and somatosensory convergence in output neurons of the cat superior colliculus: multisensory properties of the tecto-reticulo-spinal projection , 2005, Experimental Brain Research.

[36]  A. Diederich,et al.  Bimodal and trimodal multisensory enhancement: Effects of stimulus onset and intensity on reaction time , 2004, Perception & psychophysics.

[37]  M. Wallace,et al.  Unifying multisensory signals across time and space , 2004, Experimental Brain Research.

[38]  J. Lewald,et al.  Auditory-visual temporal integration as a function of distance: no compensation for sound-transmission time in human perception , 2004, Neuroscience Letters.

[39]  E Macaluso,et al.  Spatial and temporal factors during processing of audiovisual speech: a PET study , 2004, NeuroImage.

[40]  B. Stein,et al.  The role of anterior ectosylvian cortex in cross-modality orientation and approach behavior , 1996, Experimental Brain Research.

[41]  David B. Pisoni,et al.  Detection of Auditory-Visual Asynchrony in Speech and Nonspeech Signals 1 , 2004 .

[42]  A. J. King,et al.  Integration of visual and auditory information in bimodal neurones in the guinea-pig superior colliculus , 2004, Experimental Brain Research.

[43]  M. Wallace,et al.  Integration of multiple sensory modalities in cat cortex , 2004, Experimental Brain Research.

[44]  W. David Hairston,et al.  Multisensory enhancement of localization under conditions of induced myopia , 2003, Experimental Brain Research.

[45]  C. Spence,et al.  Audiovisual temporal order judgments , 2003, Experimental Brain Research.

[46]  Christopher T. Lovelace,et al.  An irrelevant light enhances auditory detection in humans: a psychophysical analysis of multisensory integration in stimulus detection. , 2003, Brain research. Cognitive brain research.

[47]  J. Lewald,et al.  Cross-modal perceptual integration of spatially and temporally disparate auditory and visual stimuli. , 2003, Brain research. Cognitive brain research.

[48]  Yôiti Suzuki,et al.  Implicit estimation of sound-arrival time , 2003, Nature.

[49]  Y. Sugita,et al.  Audiovisual perception: Implicit estimation of sound-arrival time , 2003, Nature.

[50]  S. Shimojo,et al.  Illusions: What you see is what you hear , 2000, Nature.

[51]  Michael W. Haas,et al.  Effects of Localized Auditory Information on Visual Target Detection Performance Using a Helmet-Mounted Display , 1998, Hum. Factors.

[52]  M T Wallace,et al.  Comparisons of cross-modality integration in midbrain and cortex. , 1996, Progress in brain research.

[53]  E N Pugh,et al.  A quantitative account of the activation steps involved in phototransduction in amphibian photoreceptors. , 1992, The Journal of physiology.

[54]  M. Alex Meredith,et al.  Neurons and behavior: the same rules of multisensory integration apply , 1988, Brain Research.

[55]  B. Stein,et al.  Determinants of multisensory integration in superior colliculus neurons. I. Temporal factors , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[56]  B. Stein,et al.  Visual, auditory, and somatosensory convergence on cells in superior colliculus results in multisensory integration. , 1986, Journal of neurophysiology.

[57]  B. Stein,et al.  Spatial factors determine the activity of multisensory neurons in cat superior colliculus , 1986, Brain Research.

[58]  J. Blauert Spatial Hearing: The Psychophysics of Human Sound Localization , 1983 .

[59]  Jeff Miller,et al.  Divided attention: Evidence for coactivation with redundant signals , 1982, Cognitive Psychology.

[60]  Leonard Matin,et al.  Visual Localization and Eye Movements , 1982 .

[61]  P. Lennie The physiological basis of variations in visual latency , 1981, Vision Research.

[62]  N. F. Dixon,et al.  The Detection of Auditory Visual Desynchrony , 1980, Perception.

[63]  A. Hudspeth,et al.  Response latency of vertebrate hair cells. , 1979, Biophysical journal.

[64]  H. McGurk,et al.  Hearing lips and seeing voices , 1976, Nature.

[65]  F. Colavita Human sensory dominance , 1974 .

[66]  D. Raab DIVISION OF PSYCHOLOGY: STATISTICAL FACILITATION OF SIMPLE REACTION TIMES* , 1962 .

[67]  M HERSHENSON,et al.  Reaction time as a measure of intersensory facilitation. , 1962, Journal of experimental psychology.

[68]  B. Nordlund Physical factors in angular localization. , 1962, Acta oto-laryngologica.

[69]  D. Raab Statistical facilitation of simple reaction times. , 1962, Transactions of the New York Academy of Sciences.

[70]  I. Hirsh,et al.  Perceived order in different sense modalities. , 1961, Journal of experimental psychology.