A review of Bayesian variable selection methods: what, how and which

The selection of variables in regression problems has occupied the minds of many statisticians. Several Bayesian variable selection methods have been developed, and we concentrate on the following methods: Kuo & Mallick, Gibbs Variable Selection (GVS), Stochastic Search Variable Selection (SSVS), adaptive shrinkage with Jefireys' prior or a Laplacian prior, and reversible jump MCMC. We review these methods, in the context of their difierent properties. We then implement the methods in BUGS, using both real and simulated data as examples, and investigate how the difierent methods perform in practice. Our results suggest that SSVS, reversible jump MCMC and adaptive shrinkage methods can all work well, but the choice of which method is better will depend on the priors that are used, and also on how they are implemented.

[1]  G. C. McDonald,et al.  Instabilities of Regression Estimates Relating Air Pollution to Mortality , 1973 .

[2]  R. Lande,et al.  Efficiency of marker-assisted selection in the improvement of quantitative traits. , 1990, Genetics.

[3]  Charles J. Geyer,et al.  Practical Markov Chain Monte Carlo , 1992 .

[4]  A. Atkinson Subset Selection in Regression , 1992 .

[5]  E. George,et al.  Journal of the American Statistical Association is currently published by American Statistical Association. , 2007 .

[6]  J. Geweke,et al.  Variable selection and model comparison in regression , 1994 .

[7]  B. Carlin,et al.  Bayesian Model Choice Via Markov Chain Monte Carlo Methods , 1995 .

[8]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[9]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[10]  Patrick M. Hayes,et al.  Regions of the genome that affect agronomic performance in two-row barley , 1996 .

[11]  I. Hoeschele,et al.  Mapping-linked quantitative trait loci using Bayesian analysis and Markov chain Monte Carlo algorithms. , 1997, Genetics.

[12]  E. George,et al.  APPROACHES FOR BAYESIAN VARIABLE SELECTION , 1997 .

[13]  Simon J. Godsill,et al.  On the relationship between MCMC model uncertainty methods , 1997 .

[14]  M. Sillanpää,et al.  Bayesian mapping of multiple quantitative trait loci from incomplete inbred line cross data. , 1998, Genetics.

[15]  T. Fearn,et al.  Multivariate Bayesian variable selection and prediction , 1998 .

[16]  Hoon Kim,et al.  Monte Carlo Statistical Methods , 2000, Technometrics.

[17]  G. Churchill,et al.  A statistical framework for quantitative trait mapping. , 2001, Genetics.

[18]  M. Goddard,et al.  Prediction of total genetic value using genome-wide dense marker maps. , 2001, Genetics.

[19]  J Blangero,et al.  Large upward bias in estimation of locus-specific effects from genomewide scans. , 2001, American journal of human genetics.

[20]  Petros Dellaportas,et al.  On Bayesian model and variable selection using MCMC , 2002, Stat. Comput..

[21]  Karl W. Broman,et al.  A model selection approach for the identification of quantitative trait loci in experimental crosses , 2002 .

[22]  R. Kohn,et al.  Parsimonious Covariance Matrix Estimation for Longitudinal Data , 2002 .

[23]  M. Sillanpää,et al.  Model choice in gene mapping: what and why. , 2002, Trends in genetics : TIG.

[24]  Bradley P. Carlin,et al.  Bayesian measures of model complexity and fit , 2002 .

[25]  David R. Anderson,et al.  Model selection and multimodel inference : a practical information-theoretic approach , 2003 .

[26]  Nengjun Yi,et al.  Stochastic search variable selection for identifying multiple quantitative trait loci. , 2003, Genetics.

[27]  Mikko J Sillanpää,et al.  Bayesian analysis of multilocus association in quantitative and qualitative traits , 2003, Genetic epidemiology.

[28]  Mário A. T. Figueiredo Adaptive Sparseness for Supervised Learning , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[29]  Michael E. Tipping Bayesian Inference: An Introduction to Principles and Practice in Machine Learning , 2003, Advanced Lectures on Machine Learning.

[30]  Shizhong Xu Estimating polygenic effects using markers of the entire genome. , 2003, Genetics.

[31]  M. Goddard,et al.  Mapping multiple QTL using linkage disequilibrium and linkage analysis information and multitrait data , 2004, Genetics Selection Evolution.

[32]  A. Gelman Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper) , 2004 .

[33]  Nengjun Yi,et al.  A Unified Markov Chain Monte Carlo Framework for Mapping Multiple Quantitative Trait Loci , 2004, Genetics.

[34]  S. Knapp,et al.  Mapping quantitative trait loci using molecular marker linkage maps , 1990, Theoretical and Applied Genetics.

[35]  Comment on “On the Metropolis-Hastings Acceptance Probability to Add or Drop a Quantitative Trait Locus in Markov Chain Monte Carlo-Based Bayesian Analyses” , 2004, Genetics.

[36]  Jean-Luc Jannink,et al.  On the Metropolis-Hastings Acceptance Probability to Add or Drop a Quantitative Trait Locus in Markov Chain Monte Carlo-Based Bayesian Analyses , 2004, Genetics.

[37]  S. Xu,et al.  A penalized maximum likelihood method for estimating epistatic effects of QTL , 2005, Heredity.

[38]  J. S. Rao,et al.  Spike and slab variable selection: Frequentist and Bayesian strategies , 2005, math/0505633.

[39]  Cajo J F ter Braak,et al.  Extending Xu's Bayesian Model for Estimating Polygenic Effects Using Markers of the Entire Genome , 2005, Genetics.

[40]  Mikko J Sillanpää,et al.  Bayesian Association-Based Fine Mapping in Small Chromosomal Segments , 2005, Genetics.

[41]  Andrew Gelman,et al.  R2WinBUGS: A Package for Running WinBUGS from R , 2005 .

[42]  David J. Lunn,et al.  A Bayesian toolkit for genetic association studies , 2006, Genetic epidemiology.

[43]  Tony O’Hagan Bayes factors , 2006 .

[44]  M. Sillanpää,et al.  Bayesian mapping of genotype × expression interactions in quantitative and qualitative traits , 2006, Heredity.

[45]  M. Sillanpää,et al.  Association Mapping of Complex Trait Loci With Context-Dependent Effects and Unknown Context Variable , 2006, Genetics.

[46]  G. Casella,et al.  The Bayesian Lasso , 2008 .

[47]  N. Yi,et al.  Bayesian LASSO for Quantitative Trait Loci Mapping , 2008, Genetics.