Quantitative proteomic profiling of membrane proteins from the mouse brain cortex, hippocampus, and cerebellum using the HysTag reagent: Mapping of neurotransmitter receptors and ion channels

[1]  M. Mann,et al.  Mass spectrometry–based proteomics turns quantitative , 2005, Nature chemical biology.

[2]  Tsuyoshi Tabata,et al.  Quantitative mouse brain proteomics using culture-derived isotope tags as internal standards , 2005, Nature Biotechnology.

[3]  Alexandre V. Podtelejnikov,et al.  Proteomic Mapping of Brain Plasma Membrane Proteins*S , 2005, Molecular & Cellular Proteomics.

[4]  L. Arckens,et al.  Proteomic approaches in brain research and neuropharmacology. , 2004, European journal of pharmacology.

[5]  M. Mann,et al.  Improved peptide identification in proteomics by two consecutive stages of mass spectrometric fragmentation. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[6]  M. Mann,et al.  The abc's (and xyz's) of peptide sequencing , 2004, Nature Reviews Molecular Cell Biology.

[7]  Steven P Gygi,et al.  Semiquantitative Proteomic Analysis of Rat Forebrain Postsynaptic Density Fractions by Mass Spectrometry* , 2004, Journal of Biological Chemistry.

[8]  Lei Zhang,et al.  Accurate Qualitative and Quantitative Proteomic Analysis of Clinical Hepatocellular Carcinoma Using Laser Capture Microdissection Coupled with Isotope-coded Affinity Tag and Two-dimensional Liquid Chromatography Mass Spectrometry* , 2004, Molecular & Cellular Proteomics.

[9]  Matthias Mann,et al.  HysTag—A Novel Proteomic Quantification Tool Applied to Differential Display Analysis of Membrane Proteins From Distinct Areas of Mouse Brain* , 2004, Molecular & Cellular Proteomics.

[10]  N. Klugbauer,et al.  Calcium Channel α2δ Subunits: Differential Expression, Function, and Drug Binding , 2003 .

[11]  Takashi Yamauchi,et al.  Molecular constituents of the postsynaptic density fraction revealed by proteomic analysis using multidimensional liquid chromatography‐tandem mass spectrometry , 2003, Journal of neurochemistry.

[12]  Laszlo Prokai,et al.  Proteomic analysis of the synaptic plasma membrane fraction isolated from rat forebrain. , 2003, Brain research. Molecular brain research.

[13]  J. Yates,et al.  The application of mass spectrometry to membrane proteomics , 2003, Nature Biotechnology.

[14]  Gert Lubec,et al.  Proteomics in brain research: potentials and limitations , 2003, Progress in Neurobiology.

[15]  R. Aebersold,et al.  Quantitative profiling of differentiation-induced microsomal proteins using isotope-coded affinity tags and mass spectrometry , 2001, Nature Biotechnology.

[16]  K. Kinzler,et al.  Cell surface tumor endothelial markers are conserved in mice and humans. , 2001, Cancer research.

[17]  S. Gygi,et al.  Quantitative analysis of complex protein mixtures using isotope-coded affinity tags , 1999, Nature Biotechnology.

[18]  P. Račay,et al.  Distribution of plasma membrane Ca2+ pump (PMCA) isoforms in the gerbil brain: effect of ischemia-reperfusion injury , 1999, Neurochemistry International.

[19]  N. Klugbauer,et al.  Molecular Diversity of the Calcium Channel α2δ Subunit , 1999, The Journal of Neuroscience.

[20]  U. Berger,et al.  Comparative analysis of glutamate transporter expression in rat brain using differential double in situ hybridization , 1998, Anatomy and Embryology.

[21]  A. Ravindranathan,et al.  New isoforms of the chick glutamate receptor subunit GluR4: molecular cloning, regional expression and developmental analysis. , 1997, Brain research. Molecular brain research.

[22]  Htet Htet Aung,et al.  Plasma Membrane Ca2+ Pump in Rat Brain , 1997, The Journal of Biological Chemistry.

[23]  O. Ottersen,et al.  Differential Localization of δ Glutamate Receptors in the Rat Cerebellum: Coexpression with AMPA Receptors in Parallel Fiber–Spine Synapses and Absence from Climbing Fiber–Spine Synapses , 1997, The Journal of Neuroscience.

[24]  G. Lynch,et al.  Relative concentrations and seizure‐induced changes in mRNAs encoding three AMPA receptor subunits in hippocampus and cortex , 1996, The Journal of comparative neurology.

[25]  A. N. van den Pol,et al.  Distribution of metabotropic glutamate receptor mGluR5 immunoreactivity in rat brain , 1995, The Journal of comparative neurology.

[26]  K. Mikoshiba,et al.  Expression of the metabotropic glutamate receptor mGluR1α and the ionotropic glutamate receptor GluR1 in the brain during the postnatal development of normal mouse and in the cerebellum from mutant mice , 1993, Journal of neuroscience research.

[27]  T. Dawson,et al.  Differential localization of phosphoinositide-linked metabotropic glutamate receptor (mGluR1) and the inositol 1,4,5-trisphosphate receptor in rat brain , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[28]  S. Nakanishi Molecular diversity of glutamate receptors and implications for brain function. , 1992, Science.

[29]  K. Sakimura,et al.  Molecular diversity of the NMDA receptor channel , 1992, Nature.

[30]  Bert Sakmann,et al.  Heteromeric NMDA Receptors: Molecular and Functional Distinction of Subtypes , 1992, Science.

[31]  M. Yamazaki,et al.  Functional characterization of a heteromeric NMDA receptor channel expressed from cloned cDNAs , 1992, Nature.

[32]  S. Nakanishi,et al.  Molecular cloning and characterization of the rat NMDA receptor , 1991, Nature.

[33]  A Miyawaki,et al.  Widespread expression of inositol 1,4,5-trisphosphate receptor type 1 gene (Insp3r1) in the mouse central nervous system. , 1993, Receptors & channels.