Photonic crystals for confining, guiding, and emitting light

By using the photonic crystals, we can confine, guide, and emit light efficiently. By precise control over the geometry and three-dimensional design, it is possible to obtain high quality optical devices with extremely small dimensions. Here we describe examples of high-Q optical nanocavities, photonic crystal waveguides, and surface plasmon enhanced light-emitting diode (LEDs).

[1]  Amnon Yariv,et al.  Finite-difference time-domain calculation of the spontaneous emission coupling factor in optical microcavities , 1999 .

[2]  E. Purcell,et al.  Resonance Absorption by Nuclear Magnetic Moments in a Solid , 1946 .

[3]  A. Scherer,et al.  Waveguiding in Planar Photonic Crystals , 2000 .

[4]  A. Scherer,et al.  Surface plasmon enhanced light-emitting diode , 2000, IEEE Journal of Quantum Electronics.

[5]  D. Larkman,et al.  Photonic crystals , 1999, International Conference on Transparent Optical Networks (Cat. No. 99EX350).

[6]  Amnon Yariv,et al.  InGaAsP Photonic Band Gap Crystal Membrane Microresonators , 1998 .

[7]  Axel Scherer,et al.  Room temperature photonic crystal defect lasers at near-infrared wavelengths in InGaAsP , 1999 .

[8]  Machida,et al.  Microcavity semiconductor laser with enhanced spontaneous emission. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[9]  Diana L. Huffaker,et al.  Optical characterization of two-dimensional photonic crystal cavities with indium arsenide quantum dot emitters , 2001 .

[10]  Axel Scherer,et al.  Methods for controlling positions of guided modes of photonic-crystal waveguides , 2001 .

[11]  O. Painter,et al.  Lithographic tuning of a two-dimensional photonic crystal laser array , 2000, IEEE Photonics Technology Letters.

[12]  Diana L. Huffaker,et al.  Spontaneous lifetime control in a native-oxide-apertured microcavity , 1999 .

[13]  A. Scherer,et al.  Vertical-cavity surface-emitting lasers: Design, growth, fabrication, characterization , 1991 .

[14]  H. Yokoyama,et al.  Physics and Device Applications of Optical Microcavities , 1992, Science.

[15]  A. Scherer,et al.  Design and fabrication of silicon photonic crystal optical waveguides , 2000, Journal of Lightwave Technology.

[16]  J. Joannopoulos,et al.  Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal , 1998, Science.

[17]  Amnon Yariv,et al.  Modal reflectivity in finite-depth two-dimensional photonic-crystal microcavities , 1998 .

[18]  Steven A. Cummer,et al.  An analysis of new and existing FDTD methods for isotropic cold plasma and a method for improving their accuracy , 1997 .

[19]  Eli Yablonovitch,et al.  Nanofabricated Three Dimensional Photonic Crystals Operating at Optical Wavelengths , 1996 .

[20]  Kim,et al.  Two-dimensional photonic band-Gap defect mode laser , 1999, Science.

[21]  John,et al.  Strong localization of photons in certain disordered dielectric superlattices. , 1987, Physical review letters.

[22]  Thomas P. Pearsall,et al.  Experimental and theoretical confirmation of Bloch-mode light propagation in planar photonic crystal waveguides , 2002 .

[23]  A. Scherer,et al.  Coupled-resonator optical waveguide: a proposal and analysis. , 1999, Optics letters.

[24]  Jack L. Jewell,et al.  LASING IN SUB-MICRON WIDE VERTICAL CAVITY MICROLASERS , 1991 .

[25]  E. Yablonovitch,et al.  Inhibited spontaneous emission in solid-state physics and electronics. , 1987, Physical review letters.

[26]  E. Purcell Spontaneous Emission Probabilities at Radio Frequencies , 1995 .

[27]  K. Yee Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media , 1966 .